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Introduction

Free group and group presentations (any group is isomorphic to a
quotient group of some free group).
Study of algebraic properties by combinatorial methods

Graphical representation of subgroups : Stallings graphs
Combinatorial interpretation of parameters or propertieslike the
rank, malnormality

Quantitative study of finitely generated subgroups of a free group
and analysis of related algorithms

Gromov : ”Most” of groups with a fixed number of generators
and relations and “long enough” relation length are hyperbolic.
But what does a typical group look like ?
Generic (or average) complexity of algorithms handling groups or
elements of a group.
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I. Free Group



Free group : a definition

A group F isfree if there is a subset A of F such that any element
of F can be uniquely written as a finite product of elements of A
and their inverses.

The cardinality ofA is therank of the free group.

Apart from the existence of inverses no other relation exists
between the generators of a free group.

Basic properties

The subgroups of a free group are free (Nielsen-Schreier
Theorem).

A free group with finite rank contains subgroups with any
countable rank.
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Free groups and reduced words

Let A be afinite alphabet andF = F(A) be the free group overA.

The elements ofF(A) are represented by thereduced words over
A ∪ A−1 whereA−1 = {a−1 | a ∈ A},

A word is reduced if it does not contain factors of the formaa−1

Examples :ab−1b−1aaba−1 is reduced,
aab−1a−1abcca−1 is not reduced

Reduction of a word : replacein any order all occurrences of
aa−1 by the empty wordǫ.

Example :

aab−1a−1abcca−1 = aab−1bcca−1 = aacca−1
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Finitely generated subgroups

We are interested infinitely generatedfree subgroups,i.e., obtained
from a finite set of generators.

Finitely generated free subgroups can be represented in a unique
way by a finite graph called itsStallings graph.

This description is very useful, some properties of the subgroup
can be directly obtained from its graph representation.

A 1st goal

To study algebraic properties of finitely generated subgroups of a free
group with combinatorial methods.
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Stallings foldings

Let Y = {aba−1ba−1, b2a−1, b3a−1b−1}.

Goal

To build a directed graph representing the free subgroup generated by
Y

First step

Build a directed cycle labeled withaba−1ba−1 the first element ofY
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Stallings foldings

Second step

Build from the same vertexi a directed cycle labeled withb2a−1 the
second element ofY.
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Stallings foldings

Third step

Build from the same vertexi a directed cycle labeled withb3a−1b−1

the third and last element ofY.
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Stallings foldings

Formal inverses

Reverse all edges labeled bya−1 are and replace their label bya.
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Stallings foldings

Foldings to obtain determinism and codeterminism

Apply as many times as possible the following rules of merging (or
folding) :

�

�

a

a

�

�

a

a

The result does not depend on the order in which the transformations
are performed.



Stallings foldings - 1st folding
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Stallings foldings - 2nd folding

ia

b
a

b

�

b
b

�

�

b

b

b

ab

ia

b
a

b

�

b

b

b
ab



Stallings foldings - 3rd folding
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Stallings foldings - 4th folding
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Stallings foldings - Last folding and Stallings graph
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b

The Stallings graph representing the free subgroup generated by

Y = {aba−1ba−1, b2a−1, b3a−1b−1}.
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Stallings graphs : a definition

The graph (with a distinguished vertexi) obtained is aStallings
graph.

It is deterministic and co-deterministic : each letter acts like a
partial injection on the set of states.

it is connected

all but the distinguished statei have degree at least two

A Stallings graph represents in a unique way a finitely generated
subgroup of the free group generated by the alphabet of the labels.



Stallings graphs – examples of use

One can check whether a (reduced) word belongs the subgroup
or not.
Check if there exists a cycle labeled by the word beginning in i

One can compute a basis and the rank of the subgroup

rank = |E| − (|V| − 1)

To obtain a basis, choose a spanning tree of the Stallings graph.
Each edge e that is not in the tree corresponds to a generator of
the base : the label of a cycle beginning in i using e and edges in
the spanning tree.

One can check whether the subgroup has finite index or not.
All letters act like permutations on the set of vertices
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Example for the rank

The Stallings graph of the subgroup genrated by
Y = {aba−1ba−1, b2a−1, b3a−1b−1} :

ia

b b

a

b

Therefore{b2a−1, aba−1b−1} is a basis of the subgroup and the rank
is 2.



II. Distributions on Subgroups



A graph-based distribution on subgroups

A random subgroup is given by choosing uniformly at random a
Stallings graph of sizen

Studied by Bassino, Nicaud, Weil (2008, 2010)

What does the Stallings graph of such a random subgroup look
like ?

FIGURE: A random subgroup with 200 vertices for the graph-based
distribution (The alphabet is of size 2).



The classical word-based distribution on subgroups

A random subgroup is given by choosing randomly and
uniformly k generators of length at mostn, wherek is fixed
Studied by Jitsukawa (2002), Ol’sanskiǐ (1992), . . .

What does the Stallings graph of such a random subgroup look
like ?

FIGURE: A random subgroup for the word-based distribution with 5 words
of lengths at most 40 (The alphabet is of size 2.)



Markovian automata

We useMarkovian automata, which are kind ofhidden Markov
chains, with labels (letters) on edges to generate words of a given
length.

1
3

1
3

1
3

b | 1

a | 1
2

b | 1
2

a | 1

We just require that the underlying Markov chain isergodic.



A generalized word-based distribution on subgroups

Classical :k (fixed) uniform reduced words of length at mostn

k is not fixedanymore, it is a random variableKn.

Thelengthof each word also follows a random variableLn, with
E[Ln] = n.

Each word is generated by aMarkovian automaton.
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IV. Statistical properties of the
random subgroups generated



Genericity

A propertyP is generic for (Xn) when the probability for an
element ofXn to satisfyP tends toward 1 whenn tends toward
∞.

Theorem (B., Nicaud, Weil 2012)

Most generic properties of the classical word-based model are still
generic for the generalized word-based model under mild hypotheses.

Set mild hypotheses :

Long words in average: E(Ln) = n,

No small words: Generically,Ln > µ(n), with lim µ(n) = ∞ ;
e.g.µ(n) = logd(n) (d > 0), nd (0 < d < 1),αn (0 < α < 1)

At most a polynomial number of generators: Generically,
Kn < ν(n) ; e.g.ν(n) = K (K > 1), logd n (d > 0), nd (d > 0)

The Markovian chain isergodic
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Properties of the random bases

Theorem (initial cancellation - common prefixes or suffixes)

Let Tn be the number of initial cancellations. Let 0< α < 1 and let
τ(n) be a function such thatτ(n) ≤ αµ(n) andlim τ(n) = ∞. Any
one of the following conditions implies thatTn ≤ τ(n) generically :

ν(n) is bounded ;

ν(n) = O(logd n) for somed > 0,P[Ln < µ(n)] = o( 1
log2d n

) and

τ(n) grows faster thanlog logn ;

ν(n) = O(nd) for somed > 0,P[Ln < µ(n)] = o(n−2d) and
τ(n) grows faster thanlogn.

With stronger hypotheses, we get information on error term

Same kind of result for the multiple occurrences of long factors



Some Results

Therankcan be seen on Stallings graphs by computing
|E| − |V|+ 1

Claim : the rank of a subgroup is generically its number of
generators

In particular, the rank isk in the classical model

A subgroupH is malnormalwhen for everyx /∈ H,
x−1Hx ∩ H = {1}

On the Stallings graph ofH : no non-trivial wordu labels a loop
on two distincts vertices of the graph

Claim : generically, a random subgroup is malnormal
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Some More Results - Group presentation

A set of cyclically reduced wordsC = {c1, . . . , ck} satisfies the
small cancellation propertyC′(1

6), when ifu is a factor of two
distincts cyclic conjugatesx1 andx2 of C, then
|u| ≤ min(1

6|x1|
1
6|x2|).

If a set of relators satisfies theC′(1
6) property then the presented

group enjoys a lot of properties : it istorsion-free,
word-hyperbolic, has solvable word problem, . . .
Gromov (1993) studied the case of an exponential number of
long relators.

In our setting,
Generically, reducing cyclically a random reduced word only
remove asmall number of letters
Generically, a set of long reduced wordssatisfies theC′(1

6)
property
Generically, the quotient of a free group of finite rank by the
normal closure of a random subgroup istorsion-free,
word-hyperbolic, has solvable word problem, . . .
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Thank you for your attention !


