Polyzêtas and irreducible Lyndon words (joint work with CALIN team)

Hoang Ngoc Minh
Université Lille 2
&
LIPN – UMR 7030 CNRS – Université Paris 13.

SMF-VMS Joint Congress Huế (Viêt Nam), August 20-24, 2012.

Plan of the talk

1. Introduction

- 1.1 Structures of polylogarithms and harmonic sums,
- 1.2 Towards the structure of polyzêtas,
- 1.3 Polynomial relations among generators of polyzêtas and irreducible polyzêtas by computer.
- 2. Bialgebras and bases in duality
 - 2.1 Shuffle bialgabra and Schützenberger factorization,
 - 2.2 ϕ -deformed shuffle bialgabra,
 - 2.3 Pair of bases in duality in ϕ -deformed shuffle bialgebra,
- 3. Noncommutative generating series technology
 - 3.1 Noncommutative generating series of polyzêtas,
 - 3.2 Polynomial relations among generators of polyzêtas,
 - 3.3 Structure of polyzêtas.

INTRODUCTION

(Il était une fois le rêve d'Icare)

(Classical) harmonic sums and polylogarithms

Harmonic sums and polylogarithms of order r > 0

$$\operatorname{H}_r(N) = \sum_{n=1}^N \frac{1}{n^r}$$
 and $\operatorname{Li}_r(z) = \sum_{n\geq 1} \frac{z^n}{n^r}$.

(with $N \in \mathbb{N}_+$ and |z| < 1).

From a theorem by Abel, one has

$$\forall r > 1, \qquad \lim_{N \to \infty} \mathrm{H}_r(N) = \lim_{z \to 1} \mathrm{Li}_r(z) = \zeta(r) = \sum_{n > 0} \frac{1}{n^r}.$$

Ordinary generataring series $(H_0(0) = 1 \text{ and } H_r(0) = 0, \text{ for } r > 0)$

$$P_1(z) = \sum_{N>0} H_1(N) z^N = \frac{1}{1-z} \log \frac{1}{1-z},$$

$$P_r(z) = \sum_{N \geq 0} H_r(N) z^N = \frac{1}{1-z} \operatorname{Li}_r(z).$$

Polylogarithms, harmonic sums and polyzêtas

Let $\omega_0(z)=dz/z$ and $\omega_1(z)=dz/(1-z)$. The iterated integral along the path $z_0\leadsto z$ over ω_0,ω_1 associated to $x_{i_1}\cdots x_{i_k}\in X^*$ is defined by

$$\alpha_{z_0}^{\mathsf{z}}(1_{X^*}) = 1$$
 and $\alpha_{z_0}^{\mathsf{z}}(\mathsf{x}_{i_1}\dots\mathsf{x}_{i_k}) = \int_{z_0}^{\mathsf{z}}\dots\int_{z_0}^{\mathsf{z}_{k-1}}\omega_{i_1}(\mathsf{z}_1)\dots\omega_{i_k}(\mathsf{z}_k).$

Then, for $N \in \mathbb{N}_+$, r > 0 and |z| < 1,

$$\operatorname{Li}_r(z) = \alpha_0^z(x_0^{r-1}x_1) = \sum_{n \ge 1} \frac{z^n}{n^r} \text{ and } \operatorname{H}_r(N) = \sum_{n=1}^N \frac{1}{n^r}.$$

For the multi-indices $\mathbf{s} = (s_1, \dots, s_r)$:

$$\alpha_0^{\mathsf{z}}(\mathsf{x}_0^{\mathsf{s}_1-1}\mathsf{x}_1\ldots\mathsf{x}_0^{\mathsf{s}_r-1}\mathsf{x}_1)=\mathrm{Li}_{\mathsf{s}}(\mathsf{z})=\sum_{n_1>\ldots>n_r>0}\frac{\mathsf{z}^{n_1}}{n_1^{\mathsf{s}_1}\ldots n_r^{\mathsf{s}_r}},$$

$$P_s(z) = \frac{\text{Li}_s(z)}{1-z} = \sum_{N>0} H_s(N) z^N$$
, where $H_s(N) = \sum_{N>0}^{N} \frac{1}{n_1^{s_1} \dots n_r^{s_r}}$.

If $s_1 > 1$, by an Abel's theorem, one has

$$\lim_{z\to 1} \operatorname{Li}_{\mathbf{s}}(z) = \lim_{N\to\infty} \operatorname{H}_{\mathbf{s}}(N) = \zeta(\mathbf{s}) = \sum_{n_1 > \ldots > n_r > 0} \frac{1}{n_1^{s_1} \ldots n_r^{s_r}}$$

else?

Starting with Euler-Maclaurin summation formula

$$\sum_{N \ge n \ge 1} \frac{1}{n} = \log N + \gamma - \sum_{j=1}^{k-1} \frac{B_j}{j} \frac{1}{N^j} + O\left(\frac{1}{N^k}\right),$$

$$\sum_{N \ge n \ge 1} \frac{1}{n^r} = \zeta(r) - \frac{N^{1-r}}{(r-1)} - \sum_{j=r}^{k-1} \frac{B_{j-r+1}}{j-r+1} \binom{k-1}{j-1} \frac{1}{N^j} + O\left(\frac{1}{N^k}\right),$$

where the B_i 's are the Bernoulli numbers.

For any $\mathbf{s} = (s_1, \dots, s_r)$, there exists algorithmically computable $c_j \in \mathcal{Z}, \alpha_j \in \mathbb{Z}, \beta_j \in \mathbb{N}$ and $b_i \in \mathcal{Z}', \kappa_i \in \mathbb{N}, \eta_i \in \mathbb{Z}$ such that

$$\mathrm{Li}_{\mathbf{s}}(z)$$
 $\widetilde{z o 1}$ $\sum_{j=0}^{+\infty} c_j (1-z)^{lpha_j} \log^{eta_j} (1-z),$ $\mathrm{H}_{\mathbf{s}}(N)$ $N o +\infty$ $\sum_{j=0}^{+\infty} b_j N^{\eta_j} \log^{\kappa_j} (N),$

where $\mathcal Z$ is the $\mathbb Q$ -algebra generated by convergent polyzêtas and $\mathcal Z'$ is the $\mathbb Q[\gamma]$ -algebra generated by convergent polyzêtas.

Examples by computer

Example (convergent case)

$$\operatorname{Li}_{2,1}(z) = \zeta(3) + (1-z)\log(1-z) - 1 - \frac{1}{2}(1-z)\log^2(1-z)$$

Example (divergent case)

$$(1-z)$$

 $H_{2,1}(N) = \zeta(3) - \frac{\log(N) + 1 + \gamma}{N} + \frac{\log(N)}{2N} + \dots$

 $\text{Li}_{1,2}(z) = 2 - 2\zeta(3) - \zeta(2)\log(1-z) - 2(1-z)\log(1-z)$

 $H_{1,2}(N) = \zeta(2)\gamma - 2\zeta(3) + \zeta(2)\log(N) + \frac{\zeta(2)+2}{2N} + \dots,$

$$-\frac{1}{2}$$

$$+ (1-z)^{2} \left[-\frac{1}{4} \log^{2}(1-z) + \frac{1}{4} \log(1-z) \right] + \dots,$$

$$\pm (1 - 7) I_0$$

+ $(1-z)\log^2\frac{1}{1-z}$ + $(1-z)^2\left[\frac{\log^2(1-z)}{2} - \frac{\log(1-z)}{2}\right]$ + ...

 $\zeta(2)_{\gamma} = .94948171111498152454556410223170493364000594947366$

Encoding the multi-indices by words

 $Y = \{y_k | k \in \mathbb{N}_+\}$ $(y_1 > y_2 > \dots)$ and $X = \{x_0, x_1\}$ $(x_0 < x_1)$. Y^* (resp. X^*) : monoid generated by Y (resp. X).

$$\mathbf{s} = (s_1, \ldots, s_r) \leftrightarrow w = y_{s_1} \ldots y_{s_r} \leftrightarrow w = x_0^{s_1-1} x_1 \ldots x_0^{s_r-1} x_1.$$

Let $\pi_X : \mathbb{C}\langle\!\langle Y \rangle\!\rangle \longrightarrow \mathbb{C}\langle\!\langle X \rangle\!\rangle$ and $\pi_Y : \mathbb{C}\langle\!\langle X \rangle\!\rangle \longrightarrow \mathbb{C}\langle\!\langle Y \rangle\!\rangle$ denote the "change" of alphabets over $\mathbb{C}\langle\!\langle X \rangle\!\rangle$ and $\mathbb{C}\langle\!\langle Y \rangle\!\rangle$ respectively

$$\operatorname{Li}_{w}: w \mapsto \operatorname{Li}_{w}(z) = \sum_{n_{1} > \dots > n_{r} > 0} \frac{z^{m}}{n_{1}^{s_{1}} \dots n_{r}^{s_{r}}},$$

$$\operatorname{H}_{w}: w \mapsto \operatorname{H}_{w}(N) = \sum_{N \geq n_{1} > \dots > n_{r} > 0} \frac{1}{n_{1}^{s_{1}} \dots n_{r}^{s_{r}}},$$

$$\operatorname{P}_{w}: w \mapsto \operatorname{P}_{w}(z) = \sum_{N \geq 0} \operatorname{H}_{w}(N) z^{N} = \frac{\operatorname{Li}_{w}(z)}{1 - z},$$

$$\zeta_{w}: w \mapsto \zeta(w) = \sum_{n \geq 0} \frac{1}{n_{1}^{s_{1}} \dots n_{r}^{s_{r}}}.$$

w is convergent if $s_1 > 1$. A divergent word is of the form

$$(\{1\}^k, s_{k+1}, \dots, s_r) \leftrightarrow y_1^k y_{s_{k+1}} \dots y_{s_r} \leftrightarrow x_1^k x_0^{s_{k+1}-1} x_1 \dots x_0^{s_r-1} x_1, \quad \text{for} \quad k \geq 1.$$

Structure of polylogarithms and harmonic sums

Putting $\text{Li}_{x_0}(z) = \log z$ then

$$\begin{array}{ccc} \operatorname{Li}: \mathbb{Q}\langle X \rangle & \longrightarrow & \mathbb{Q}\{\operatorname{Li}_w\}_{w \in X^*}, \\ w & \longmapsto & \operatorname{Li}_w \end{array}$$

becomes an isomorphism from $(\mathbb{Q}\langle X\rangle, \mathrm{III})$ to $(\mathbb{Q}\{\mathrm{Li}_w\}_{w\in X^*},.)$ and

$$\begin{split} \mathrm{H}: \mathbb{Q}\langle Y\rangle &\longrightarrow &\mathbb{Q}\{\mathrm{H}_w\}_{w\in Y^*},\\ w &\longmapsto &\mathrm{Li}_w \end{split}$$

becomes an isomorphism from ($\mathbb{Q}(Y)$, \bowtie) to ($\mathbb{Q}\{H_w\}_{w\in Y^*}$,.). Thus,

- ▶ $\{\operatorname{Li}_w\}_{w\in X^*}$ are \mathbb{Q} linearly independent and then $\{\operatorname{Li}_l\}_{l\in\mathcal{L}ynX}$ are \mathbb{Q} -algebraically independent.
- ▶ $\{H_w\}_{w \in X^*}$ are \mathbb{Q} -linearly independent and then $\{H_l\}_{l \in \mathcal{L}ynY}$ are \mathbb{Q} -algebraically independent.

Therefore, $\{\zeta(I)\}_{I\in\mathcal{L}ynX-\{x_0,x_1\}}$ and $\{\zeta(I)\}_{I\in\mathcal{L}ynY-\{y_1\}}$ are two families of generators of the \mathbb{Q} -algebra \mathcal{Z} .

Towards the structure of polyzêtas

Corollary

$$\forall u, v \in X^*, \operatorname{Li}_u \operatorname{Li}_v = \operatorname{Li}_{u \boxplus v} \Rightarrow \forall u, v \in x_0 X^* x_1, \zeta(u) \zeta(v) = \zeta(u \boxplus v).$$
 Example
$$x_0 x_1 \boxplus x_0^2 x_1 = x_0 x_1 x_0^2 x_1 + 3 x_0^2 x_1 x_0 x_1 + 6 x_0^3 x_1^2,$$

$$\operatorname{Li}_2 \operatorname{Li}_3 = \operatorname{Li}_{2,3} + 3 \operatorname{Li}_{3,2} + 6 \operatorname{Li}_{4,1},$$

$$\zeta(2) \zeta(3) = \zeta(2,3) + 3 \zeta(3,2) + 6 \zeta(4,1).$$

Corollary

$$\forall u, v \in Y^*, H_u H_v = H_{u \bowtie v} \Rightarrow \forall u, v \in Y^* \setminus y_1 Y^*, \zeta(u)\zeta(v) = \zeta(u \bowtie v).$$
 Example
$$y_2 \bowtie y_3 = y_2 y_3 + y_3 y_2 + y_5,$$

$$H_2 H_3 = H_{2,3} + H_{3,2} + H_5,$$

$$\zeta(2)\zeta(3) = \zeta(2,3) + \zeta(3,2) + \zeta(5).$$

$$\left. \begin{array}{l} \zeta(2)\zeta(3) = \zeta(2,3) + 3\zeta(3,2) + 6\zeta(4,1) \\ \zeta(2)\zeta(3) = \zeta(2,3) + \zeta(3,2) + \zeta(5) \end{array} \right\} \Rightarrow \zeta(5) = 2\zeta(3,2) + 6\zeta(4,1).$$

Polynomial relations on $\{\zeta(I)\}_{I\in\mathcal{L}ynX\setminus\{x_0,x_1\}}$ by computer

$$\zeta(2,1) = \zeta(3)$$

$$\zeta(4) = \frac{2}{5}\zeta(2)^{2}$$

$$\zeta(3,1) = \frac{1}{10}\zeta(2)^{2}$$

$$\zeta(2,1,1) = \frac{2}{5}\zeta(2)^{2}$$

$$\zeta(4,1) = 2\zeta(5) - \zeta(2)\zeta(3)$$

$$\zeta(3,2) = -\frac{11}{2}\zeta(5) + 3\zeta(2)\zeta(3)$$

$$\zeta(3,1,1) = 2\zeta(5) - \zeta(2)\zeta(3)$$

$$\zeta(2,2,1) = -\frac{11}{2}\zeta(5) + 3\zeta(2)\zeta(3)$$

$$\zeta(2,2,1) = -\frac{11}{2}\zeta(5) + 3\zeta(2)\zeta(3)$$

$$\zeta(3,1,1) = \zeta(5)$$

$$\zeta(6) = \frac{8}{35}\zeta(2)^{3}$$

$$\zeta(5,1) = -\frac{1}{2}\zeta(3)^{2} + \frac{6}{35}\zeta(2)^{3}$$

$$\zeta(4,2) = \zeta(3)^{2} - \frac{32}{105}\zeta(2)^{3}$$

$$\zeta(4,1,1) = -\zeta(3)^{2} + \frac{23}{70}\zeta(2)^{3}$$

$$\zeta(3,2,1) = 3\zeta(3)^{2} - \frac{29}{30}\zeta(2)^{3}$$

$$\zeta(3,1,2) = -\frac{3}{2}\zeta(3)^{2} + \frac{53}{105}\zeta(2)^{3}$$

$$\zeta(3,1,1,1) = -\frac{1}{2}\zeta(3)^{2} + \frac{6}{35}\zeta(2)^{3}$$

$$\zeta(2,2,1,1) = \zeta(3)^{2} - \frac{32}{105}\zeta(2)^{3}$$

$$\zeta(2,2,1,1) = \frac{8}{35}\zeta(2)^{3}$$

Irreducible polyzêtas by computer

, r	1	2	3	4	5
<i>n</i> 2	ζ(2)				
3	ζ(3)				
5	ζ(5)				
7	ζ(7)				
8		$\zeta(6,2)$			
9	ζ(9)				
10		$\zeta(8,2)$			
11	$\zeta(11)$		$\zeta(8, 2, 1)$		
12		$\zeta(10, 2)$		$\zeta(8, 2, 1, 1)$	
13	ζ(13)		$\zeta(9, 3, 1)$ $\zeta(10, 2, 1)$		
14		$\zeta(10, 4)$		$\zeta(10, 2, 1, 1)$	
		$\zeta(12, 2)$			
15	$\zeta(15)$		$\zeta(11, 3, 1)$		$\zeta(10,2,1,1,1)$
			$\zeta(12, 2, 1)$		
16		$\zeta(12, 4)$		$\zeta(10, 4, 1, 1)$	
		$\zeta(14, 2)$		$\zeta(11, 3, 1, 1)$	
				$\zeta(12, 2, 1, 1)$	

r: deph of $\zeta(s_1,\ldots,s_r)$,

 $n = s_1 + \ldots + s_r$: weight of $\zeta(s_1, \ldots, s_r)$.

It was conjectured (since 1997)

- ▶ For any Lyndon word $\lambda, \zeta(\lambda)$ is a polynomial on the irreducible polyzêtas $\zeta(\ell)$, with $\ell \in \mathcal{L}$ ynX and $|\ell| \leq |\lambda|$?
- ▶ Thus, by a Radford's theorem, for any convergent word $\lambda, \zeta(\lambda)$ polynomial on the polyzêtas irreducible $\zeta(\ell)$, with $\ell \in \mathcal{L}$ ynX and $|\ell| \leq |\lambda|$?
- Moreover, these polynomial relations are homogenous ?
- ► The Q-algebra of convergent polyzêtas
 - ▶ is free ?
 - ▶ is graded by weight ?
- ► The irreducible polyzêtas constitute a transcendence basis for the ℚ-algebra Z ?
- Each convergent polyzêta is a transcendental number ?

BIALGEBRA AND BASES IN DUALITY

(La conquête de Mars ...)

Shuffle bialgebra and Schützenberger's factorization

Let $\mathcal{L}ynY$ be the set of Lyndon words over Y.

$$P_{l} = I \qquad \text{for } l \in Y,$$

$$P_{l} = [P_{s}, P_{r}] \qquad \text{for } l \in \mathcal{L}ynY \setminus Y,$$

$$\text{standard factorization of } l = (s, r),$$

$$P_{w} = P_{l_{1}}^{i_{1}} \dots P_{l_{k}}^{i_{k}} \qquad \text{for } w = l_{1}^{i_{1}} \dots l_{k}^{i_{k}},$$

$$l_{1} > \dots > l_{k}, l_{1} \dots, l_{k} \in \mathcal{L}ynY.$$

$$S_{l} = 1 \qquad \text{for } l = 1_{X^{*}},$$

$$S_{l} = xS_{u}, \qquad \text{for } l = xu \in \mathcal{L}ynY,$$

$$S_{w} = \frac{S_{l_{1}}^{\text{III}i_{1}} \dots \dots \dots S_{l_{k}}^{\text{III}i_{k}}}{i_{1}! \dots i_{k}!} \qquad \text{for } w = l_{1}^{i_{1}} \dots l_{k}^{i_{k}},$$

$$l_{1} > \dots > l_{k}, l_{1} \dots, l_{k} \in \mathcal{L}ynY.$$

Theorem (Schützenberger, 1958)

$$\sum_{w \in Y^*} w \otimes w = \sum_{w \in Y^*} S_w \otimes P_w = \prod_{l \in \mathcal{L}ynY}^{\rightarrow} \exp(S_l \otimes P_l).$$

The ϕ -deformed shuffle bialgebra

This product is defined by $u m_{\phi} 1_{Y^*} = 1_{Y^*} m_{\phi} u = u$ and $y_i u m_{\phi} y_i v = y_i (y_i u m_{\phi} v) + y_i (u m_{\phi} y_i v) + \phi(y_i, y_i) (y_i u m_{\phi} v)$, where

$$\phi: \mathbb{Q}\langle Y \rangle \otimes \mathbb{Q}\langle Y \rangle \longrightarrow \mathbb{Q}\langle Y \rangle, \qquad \phi(y_i, y_j) := \sum_{k \in I \subset \mathbb{N}} c_{i,j}^k y_k$$

and is supposed to be an associative and commutative law of algebra and it is localy finite, i.e. $\#\{(i,j) \in \mathbb{N}^2 | c_{i,j}^k \neq 0\} < +\infty$, for $k \in \mathbb{N}$. This suggests an associated coproduct defined by

$$\forall y_k \in Y, \quad \Delta_{\mathbf{\Pi}_{\phi}}(y_k) = y_k \otimes 1 + 1 \otimes y_k + \Delta_{\mathbf{\Pi}_{\phi}}^+(y_k),$$

$$\Delta_{\mathbf{\Pi}_{\phi}}^+(y_k) = \sum_{i+j=k} c_{i,j}^k y_i \otimes y_j$$

satisfying $\langle \Delta_{\mathrm{III}_{\phi}}(w)|u\otimes v\rangle=\langle w|u\mathrm{III}_{q}v\rangle$ and if $\pi_{1}^{(\phi)}(y_{k})$ is a homogenous polynomial of $\deg y_{k}=k$ and is given by

$$\pi_1^{(\phi)}(w) = \sum_{k \in \mathbb{N}} \frac{(-1)^{k-1}}{k} \qquad \sum_{m \in \mathbb{N}} \langle \Delta_{m_\phi}^{+(k-1)}(w) | u_1 \otimes \ldots \otimes u_k \rangle u_1 \ldots u_k.$$

then
$$\Delta_{\mathrm{III}_\phi}(\pi_1^{(\phi)}(y_k))=\pi_1^{(\phi)}(y_k)\otimes 1+1\otimes \pi_1^{(\phi)}(y_k)$$

Particular case of deformation : q-shuffle bialgebra

The *q*-shuffle product defined by

$$u m_q 1_{Y^*} = 1_{Y^*} m_q u = u,$$

 $y_i u m_q y_j v = y_i (u m_q y_j v) + y_j (y_i u m_q y v) + q y_{i+j} (y_i u m_q v),$

and its associated coproduct is defined respectively by

$$\forall y_k \in Y, \Delta_{\Pi q}(y_k) = y_k \otimes 1 + 1 \otimes y_k + q \sum_{i+j=k} y_i \otimes y_j$$

satistying $\langle \Delta_{\mathrm{III}_q}(w)|u\otimes v\rangle=\langle w|u\mathrm{III}_qv\rangle$ and if $\pi_1^{(q)}(y_k)$ is a homogenous polynomial of $\deg y_k=k$ and is given by

$$\pi_1^{(q)}(y_k) = y_k + \sum_{i\geq 2} \frac{(-q)^{i-1}}{i} \sum_{\substack{j_1,\ldots,j_i\geq 1\\j_1+\ldots+j_i=k}} y_{j_1}\ldots y_{j_i}.$$

then
$$\Delta_{\text{III}_q}(\pi_1^{(q)}(y_k)) = \pi_1^{(q)}(y_k) \otimes 1 + 1 \otimes \pi_1^{(q)}(y_k).$$

Examples, with q = +1, 0, -1, lead respectively to stuffle, shuffle, minus-stuffle products.

Structure of \mathbf{m}_{ϕ}

Theorem

Let A be a commutative ring (with unit) and $\phi: AY \otimes AY \longrightarrow AY$ be an associative and commutative law on AY. Then

- i) If $\mathbb{Q} \subset A$, $\mathcal{A} = (A\langle Y \rangle, \mathbb{m}_{\phi}, 1_{Y^*})$ admits $\mathcal{L}ynY$, the set of Lyndon words over Y, as a transcendence basis.
- ii) If ϕ is localy finite, let $\Delta_{\mathrm{III}_{\phi}}:AY\longrightarrow AY\otimes AY$ denotes its dual comultiplication, then
 - a) $\mathcal{B}_{\phi} = (A\langle Y \rangle, \mathsf{conc}, 1_{X^*}, \Delta_{\mathrm{III}_{\phi}}, \varepsilon)$ is a bialgebra.
 - b) If A is a field of characterstic 0 then \mathcal{B}_{ϕ} is an enveloping bialgebra if and only if the algebra AY admits an increasing filtration $\left((AY)_n\right)_{n\in\mathbb{N}}$ with $(AY)_0=\{0\}$ compatible with (the multiplication and) the comultiplication $\Delta_{\mathrm{III}_{\phi}}$ i.e.

$$\Delta_{\mathrm{III}_{\phi}}((AY)_n)\subset \sum_{p+q=n}(AY)_p\otimes (AY)_q.$$

Convolutional CQMM theorem

Theorem

Let \mathcal{B} be a k-cocommutative bialgebra (k is a field of characteristic zero). Then, the following conditions are equivalent:

i) ${\cal B}$ admits an increasing filtration

$$\mathcal{B}_0 = k.1_{\mathcal{B}} \subset \mathcal{B}_1 \subset \cdots \subset \mathcal{B}_n \subset \mathcal{B}_{n+1} \cdots$$

compatible with the structures of algebra (i.e. for all $p, q \in \mathbb{N}$, one has $\mathcal{B}_p \mathcal{B}_q \subset \mathcal{B}_{p+q}$) and coalgebra :

$$\forall n \in \mathbb{N}, \quad \Delta(\mathcal{B}_n) \subset \sum_{p+q=n} \mathcal{B}_p \otimes \mathcal{B}_q.$$

ii) $\mathcal{B} \cong_{k-bialg} \mathcal{U}(Prim(\mathcal{B}))$ is an enveloping algebra.

Pair of bases in duality in ϕ -deformed shuffle bialgabra

$$\Pi_{I} = \pi_{1}^{(\phi)}(I) \quad \text{for } I \in Y,$$

$$\Pi_{I} = [\Pi_{s}, \Pi_{r}], \quad \text{for } I \in \mathcal{L}ynX, \text{ standard factorization of } I = (s, r),$$

$$\Pi_{w} = \Pi_{I_{1}}^{i_{1}} \dots \Pi_{I_{k}}^{i_{k}}, \quad \text{for } w = I_{1}^{i_{1}} \dots I_{k}^{i_{k}}, I_{1} > \dots > I_{k}, I_{1} \dots, I_{k} \in \mathcal{L}ynY.$$

Then $\mathcal{L}ie_{\mathbb{Q}}\langle Y \rangle$ is freely generated by the family $\{\Pi_I\}_{I \in \mathcal{L}ynY}$. Thus, the free associative $\mathbb{Q}\langle Y \rangle$ is the enveloping algebra of $\mathcal{L}ie_{\mathbb{Q}}\langle Y \rangle$.

Theorem

Let $\{\Sigma_w\}_{w\in Y^*}$ be the dual basis of $\{\Pi_w\}_{w\in Y^*}$:

$$\forall u, v \in Y^*, \quad \langle \Sigma_v | \Pi_u \rangle = \delta_{u,v}.$$

Then
$$\sum_{w \in Y^*} w \otimes w = \sum_{w \in Y^*} \Sigma_w \otimes \Pi_w = \prod_{l \in \mathcal{L}ynY} \exp(\Sigma_l \otimes \Pi_l).$$

Note that, for any Lyndon word I, Π_I and Σ_I are triangular and are homogenous polynomiale of degre |I|, with $\deg(y_k) = k$.

NONCOMMUTATIVE GENERATING SERIES

(La vie sur Mars ...)

Noncommutative generating series of polyzêtas (1/2)

Let
$$X = \{x_0, x_1\}$$
 and $Y = \{Y_i\}_{i \ge 1}$.

Definition

L(z) :=
$$\sum_{w \in X^*} \operatorname{Li}_w(z) w$$
 and H(N) := $\sum_{w \in Y^*} \operatorname{H}_w(N) w$.

Theorem (HNM, 2009)

$$\begin{split} \Delta_{III}L = L \otimes L &\quad \text{and} \quad \Delta_{\boxminus}H = H \otimes H, \\ L(z) = e^{x_1 \log \frac{1}{1-z}} L_{\operatorname{reg}}(z) e^{x_0 \log z} &\quad \text{and} \quad H(N) = e^{H_1(N) \, y_1} H_{\operatorname{reg}}(N), \\ \text{where } L_{\operatorname{reg}}(z) = \prod_{\stackrel{I \in \mathcal{L}_{ynX}}{I \neq y_0, x_1}} e^{\operatorname{Lis}_{J_i}(z) \, P_I} &\quad \text{and} \quad H_{\operatorname{reg}}(N) = \prod_{\stackrel{I \in \mathcal{L}_{ynY}}{I \neq y_1}} e^{H_{\Sigma_I}(N) \, \Pi_I}. \end{split}$$

Definition

$$Z_{\mathrm{III}} := \mathrm{L}_{\mathrm{reg}}(1)$$
 and $Z_{\mathrm{L\!\!\!\perp\!\!\!\perp}} := \mathrm{H}_{\mathrm{reg}}(\infty)$.

Noncommutative generating series of polyzêtas (2/2)

$$\begin{split} Z_{\mathrm{III}} &= \prod_{I \in \mathcal{L}ynX, I \neq x_0, x_1}^{\checkmark} \exp[\zeta(S_I)P_I] \quad \text{and} \quad Z_{\boxplus} = \prod_{I \in \mathcal{L}ynY, I \neq y_1}^{\checkmark} \exp[\zeta(\Sigma_I)\Pi_I]. \\ & \mathrm{L}(z) \quad \underset{Z \to 1}{\sim} \quad \exp[-x_1\log(1-z)]Z_{\mathrm{III}}. \\ & \mathrm{H}(N) \quad \underset{N \to \infty}{\sim} \quad \exp\Big[-\sum_{k > 1} \mathrm{H}_{y_k}(N) \frac{(-y_1)^k}{k}\Big] \pi_Y Z_{\mathrm{III}}. \end{split}$$

Theorem (HNM, 2005)

For any $w \in Y^*$, let γ_w be the Euler-Maclaurin constant associated to H_w . Let

$$Z_{\gamma} := \sum_{w \in Y^*} \gamma_w \ w.$$

Then $\Delta_{\!\perp\!\!\perp\!\!\perp} Z_{\!\gamma} = Z_{\!\gamma} \otimes Z_{\!\gamma}$ and $Z_{\!\gamma} = B(y_1) \pi_Y Z_{\!\Pi\!\Pi} = e^{\gamma y_1} Z_{\!\perp\!\!\perp\!\!\perp}$, where

$$B(y_1):=\exp\left[-\gamma y_1+\sum_{k>2}\zeta(k)\frac{(-y_1)^k}{k}\right]\quad and\quad B'(y_1):=\mathrm{e}^{\gamma y_1}B(y_1).$$

Generalized Euler constants

By specializing at

$$t_1 = \gamma$$

and

$$\forall l \geq 2, \qquad t_l = (-1)^{l-1}(l-1)!\zeta(l)$$

in the Bell polynomials $b_{n,k}(t_1,\ldots,t_k)$, we get

Corollary

$$\gamma_{y_1^k} = \sum_{\substack{s_1, \dots, s_k > 0 \\ s_1 + \dots + ks_k = k+1}} \frac{(-1)^k}{s_1! \dots s_k!} (-\gamma)^{s_1} \left(-\frac{\zeta(2)}{2}\right)^{s_2} \dots \left(-\frac{\zeta(k)}{k}\right)^{s_k}.$$

$$\gamma_{y_1^k w} = \sum_{i=0}^k \frac{\zeta(x_0[(-x_1)^{k-i} m\pi_X w])}{i!} \left[\sum_{i=1}^i b_{i,j}(\gamma, -\zeta(2), 2\zeta(3), \dots)\right].$$

Generalized Euler constants by computer $\gamma_{1,1} = \frac{\gamma^2 - \zeta(2)}{2}$,

$$\gamma_{1,1,1} = \frac{\gamma^3 - 3\zeta(2)\gamma + 2\zeta(3)}{6},$$

$$\gamma_{1,1,1,1} = \frac{80\zeta(3)\gamma - 60\zeta(2)\gamma^2 + 6\zeta(2)^2 + 10\gamma^4}{240},$$

$$\gamma_{1,7} = \zeta(7)\gamma + \zeta(3)\zeta(5) - \frac{54}{175}\zeta(2)^4,$$

$$\gamma_{1,1,6} = \frac{4}{35}\zeta(2)^3\gamma^2 + [\zeta(2)\zeta(5) + \frac{2}{5}\zeta(3)\zeta(2)^2 - 4\zeta(7)]\gamma$$

$$+ \zeta(6,2) + \frac{19}{35}\zeta(2)^4 + \frac{1}{2}\zeta(2)\zeta(3)^2 - 4\zeta(3)\zeta(5),$$

$$\gamma_{1,1,1,5} = \frac{3}{4}\zeta(6,2) - \frac{14}{3}\zeta(3)\zeta(5) + \frac{3}{4}\zeta(2)\zeta(3)^2 + \frac{809}{1400}\zeta(2)^4$$

$$- \left(2\zeta(7) - \frac{3}{2}\zeta(2)\zeta(5) + \frac{1}{10}\zeta(3)\zeta(2)^2\right)\gamma$$

$$+ \left(\frac{1}{4}\zeta(3)^2 - \frac{1}{5}\zeta(2)^3\right)\gamma^2 + \frac{1}{6}\zeta(5)\gamma^3.$$

Polynomial relations among generators of polyzêtas (1/3)

Let A be a commutative \mathbb{Q} -algebra.

Let $\Phi \in A\langle\!\langle X \rangle\!\rangle$ s.t. $\Delta_{\mathrm{III}}(\Phi) = \Phi \otimes \Phi$. Then there exists an unique $C \in \mathcal{L}ie_A\langle\!\langle X \rangle\!\rangle$ s.t. $\Phi = Z_{\mathrm{III}}e^C$.

$$dm(A) := \{Z_{\mathrm{III}}e^{\mathsf{C}} | \mathsf{C} \in \mathcal{L}ie_A\langle\!\langle X \rangle\!\rangle, \quad \langle e^{\mathsf{C}} | x_0 \rangle = \langle e^{\mathsf{C}} | x_1 \rangle = 0\}.$$
 For any $\Phi = Z_{\mathrm{III}}e^{\mathsf{C}} \in dm(A)$, let Ψ and $\Psi' \in A\langle\!\langle Y \rangle\!\rangle$ s.t.
$$\Psi = B(y_1)\pi_Y\Phi \quad \text{and} \quad \Psi' = B'(y_1)\pi_Y\Phi,$$

where
$$B(y_1) = \exp\left[-\frac{\gamma}{y_1} + \sum_{k \geq 2} \zeta(k) \frac{(-y_1)^k}{k}\right], B'(y_1) = e^{\gamma y_1} B(y_1).$$

The polynomial relations with coefficients in A among generators of polyzêtas can be obtained by identifying the coefficients in

$$\forall \Phi \in dm(A), \quad \Psi = B(y_1)\pi_Y \Phi \iff \Psi' = B'(y_1)\pi_Y \Phi.$$

Theorem

If $\gamma \notin A$ then γ transcendental over the A-algebra generated by convergent polyzêtas.

Polynomial relations among generators of polyzêtas (2/3)

For any $\Phi \in dm(A)$, let $\Psi = B'(y_1)\pi_Y\Phi$. Then

$$\Phi = \sum_{w \in X^*} \phi(w) \ w = \prod_{\substack{l \in \mathcal{L}ynX \\ l \neq x_0, x_1}}^{\searrow} e^{\phi(S_l) P_l},$$

$$\Psi = \sum_{w \in Y^*} \psi(w) \ w = \prod_{\substack{l \in \mathcal{L}ynY \\ l \neq x_0, x_1}}^{\searrow} e^{\phi(\Sigma_l) \Pi_l}.$$

Therefore,

$$\prod_{\substack{l \in \mathcal{L} y n X \\ l \neq y_0, x_1}}^{\searrow} e^{\phi(S_l) P_l} = \exp\left(-\sum_{k \geq 2} \zeta(k) \frac{(-x_1)^k}{k}\right) \pi_X \prod_{\substack{l \in \mathcal{L} y n Y \\ l \neq y_1}}^{\searrow} e^{\psi(\Sigma_l) \Pi_l}.$$

In particular, if $\Phi = Z_{\text{III}}$ and $\Psi = Z_{\text{LL}}$ then

$$\prod_{\substack{I \in \mathcal{L}ynX \\ I \neq x_0, x_1}}^{\searrow} e^{\zeta(S_I) P_I} = \exp\left(-\sum_{k \geq 2} \zeta(k) \frac{(-x_1)^k}{k}\right) \pi_X \prod_{\substack{I \in \mathcal{L}ynY \\ I \neq y_1}}^{\searrow} e^{\zeta(\Sigma_I) \Pi_I}.$$

Polynomial relations among generators of polyzêtas (2/3)

$$\prod_{\substack{\ell \in \mathcal{L} y n X \\ \ell \neq x_0, x_1}}^{\searrow} e^{\zeta(\ell) \; \hat{\ell}} \;\; = \;\; \exp\biggl(- \sum_{k \geq 2} \zeta(k) \frac{\left(- x_1 \right)^k}{k} \biggr) \pi_X \; \prod_{\substack{\ell \in \mathcal{L} y n Y \\ \ell \neq y_1}}^{\searrow} e^{\zeta(\ell) \; \hat{\ell}}.$$

Since $\forall \ell \in \mathcal{L}ynY \iff \pi_X \ell \in \mathcal{L}ynX \setminus \{x_0\}$ then identifying the local coordinates, we get polynomial relations among the generators which are algebraically independent on γ .

Theorem

For $\ell \in \mathcal{L}ynY - \{y_1\}$, let $P_\ell \in \mathcal{L}ie_\mathbb{Q}\langle X \rangle$ be the decomposition of $\pi_X \hat{\ell}$ in a PBW basis and let $\check{P}_\ell \in \mathbb{Q}[\mathcal{L}ynX - \{x_0, x_1\}]$ be its dual. Then $\pi_X \ell - \check{P}_\ell \in \ker \phi$.

In particular, for $\phi = \zeta$ one gets $\pi_X \ell - \check{P}_\ell \in \ker \zeta$. If $\pi_X \ell \equiv \check{P}_\ell$ then $\zeta(\ell)$ is \mathbb{Q} -irreductible. Moreover, $\forall \ell \in \mathcal{L}ynY - \{y_1\}, \pi_Y \ell - \check{P}_\ell \in \mathbb{Q}\langle Y \rangle$ is homogenous of degree equal $|\ell| \geq 2$.

Structure of polyzêtas

Theorem

The \mathbb{Q} -algebra generated by convergent polyzêtas is isomorphic to the graded algebra $(\mathbb{Q} \oplus (Y - y_1)\mathbb{Q}\langle Y \rangle / \ker \zeta, \perp)$.

Proof.

Since $\ker \zeta$ is an ideal generated by the homogenous polynomials then the quotient $\mathbb{Q} \oplus (Y - y_1)\mathbb{Q}\langle Y \rangle / \ker \zeta$ is graded.

Corollary

The \mathbb{Q} -algebra of polyzêtas is generated by \mathbb{Q} -irreducible polyzêtas.

Proof.

For any $\lambda \in \mathcal{L}ynY$, if $\lambda = \check{P}_{\lambda}$ then one gets the conclusion else $\pi_X \lambda - \check{P}_{\lambda} \in \ker \zeta$. Since $\check{P}_{\lambda} \in \mathbb{Q}[\mathcal{L}ynX]$ then \check{P}_{λ} is polynomial on Lyndon words of degree $\leq |\lambda|$. For each Lyndon word does appear in this decomposition of \check{P}_{λ} , after applying π_Y , the same process goes on untill having irreducible polyzêtas.

THANK YOU FOR YOUR ATTENTION

(Mars brule-t-il?)

Continuity and indiscernability (1/2)

Definition

Let \mathcal{H} be a class of formal power series over X. Let $S \in \mathbb{C}\langle\!\langle X \rangle\!\rangle$.

1. S is said to be *continuous* over $\mathcal H$ if for any $\Phi \in \mathcal H$, the sum below is normally convergent and we denote $\langle S |\!| \Phi \rangle$ this sum

$$\sum_{w \in X^*} \langle S | w \rangle \langle \Phi | w \rangle.$$

The set of continuous power series over \mathcal{H} is denoted by $\mathbb{C}^{\mathrm{cont}}\langle\langle X \rangle\rangle$.

2. S is said to be *indiscernable* over \mathcal{H} if and only if

$$\forall \Phi \in \mathcal{H}, \quad \langle S \| \Phi \rangle = \sum_{w \in X^*} \langle S | w \rangle \langle \Phi | w \rangle = 0.$$

Definition

Let $S \in \mathbb{Q}\langle\!\langle X \rangle\!\rangle$ and let $P \in \mathbb{Q}\langle X \rangle$. The *left residual* (resp. *right residual*) of S by P, is the formal power series $P \triangleleft S$ (resp. $S \triangleright P$) in $\mathbb{Q}\langle\!\langle X \rangle\!\rangle$ defined by :

$$\langle P \triangleleft S | w \rangle = \langle S | wP \rangle$$
 (resp. $\langle S \triangleright P | w \rangle = \langle S | Pw \rangle$).

Continuity and indiscernability (2/2)

Lemma

Let \mathcal{H} be a monoid containing strictly $\{e^{t \times}\}_{x \in X}^{t \in \mathbb{C}}$. Let $S \in \mathbb{C}^{\mathrm{cont}}\langle\!\langle X \rangle\!\rangle$ being indiscernable over \mathcal{H} . Then for any $x \in X$, $x \triangleleft S$ and $S \triangleright x$ belong to $\mathbb{C}^{\mathrm{cont}}\langle\!\langle X \rangle\!\rangle$ and they are indiscernable over \mathcal{H} .

Proposition

Let \mathcal{H} be a monoid containing strictly $\{e^{t \times X}\}_{x \in X}^{t \in \mathbb{C}}$. The power series $S \in \mathbb{C}^{\mathrm{cont}}(\langle X \rangle)$ is indiscernable over \mathcal{H} if and only if S = 0.

Proof.

If S=0 then it is immediate that S is indiscernable over \mathcal{H} . Conversely, if S is indiscernable over \mathcal{H} then, for any word $w\in X^*$, by induction on the length of w, $w\triangleleft S$ is indiscernable over \mathcal{H} and then in particular,

$$\langle w \triangleleft S | \mathrm{Id}_{\mathcal{H}} \rangle = \langle S | w \rangle = 0.$$

In other words, S = 0.



Ideal of relations (1/4)

Definition

Let Q_ℓ be the decomposition of the proper polynomial $\Pi_Y \ell - \check{P}_\ell$ (resp.

$$\Pi_X \ell - \check{P}_\ell$$
) in $\mathcal{L}ynY$ (resp. $\mathcal{L}ynX$). Let

$$\mathcal{R}_Y := \{Q_\ell\}_{\ell \in \mathcal{L}ynY - \{y_1\}},$$

$$\mathcal{R}_X := \{Q_\ell\}_{\ell \in \mathcal{L}ynX - \{x_0, x_1\}}$$

and

$$\mathcal{L}_{irr}Y := \{ \ell \in \mathcal{L}ynY - \{y_1\} \mid Q_{\ell} = 0 \},$$

$$\mathcal{L}_{irr}X := \{ \ell \in \mathcal{L}ynX - \{x_0, x_1\} \mid Q_{\ell} = 0 \}.$$

It follows that

$$\begin{array}{rcl} (\mathbb{Q}[\mathcal{L}ynY - \{y_1\}], \; \ \sqcup) & = & (\mathcal{R}_Y, \; \ \sqcup) \oplus (\mathbb{Q}[\mathcal{L}_{irr}Y], \; \ \sqcup), \\ (\mathbb{Q}[\mathcal{L}ynX - \{x_0, x_1\}], \; \ \sqcup) & = & (\mathcal{R}_X, \; \ \sqcup) \oplus (\mathbb{Q}[\mathcal{L}_{irr}X], \; \ \sqcup). \end{array}$$

Lemma

For any $\Phi \in dm(A)$, let $\Psi = B'(y_1)\Pi_Y\Phi$. We have $\mathcal{R}_Y \subseteq \ker \psi$ and $\mathcal{R}_X \subseteq \ker \phi$. In particular, $\mathcal{R}_Y \subseteq \ker \zeta$ and $\mathcal{R}_X \subseteq \ker \zeta$.

Proposition

$$\mathcal{R}_X \subseteq \mathcal{R} := \bigcap_{\Phi \in \mathit{dm}(A)} \ker \phi \quad (\mathit{resp.} \quad \mathcal{R}_Y \subseteq \mathcal{R} := \bigcap_{\Psi = B'(y_1)\sqcap_Y \Phi \atop \Phi \in \mathit{dm}(A)} \ker \psi).$$

Ideal of relations (2/4)

Proposition

For any proper polynomial $Q \in \mathbb{Q}[\mathcal{L}_{irr}X]$ (resp. $\mathbb{Q}[\mathcal{L}_{irr}Y]$),

$$Q \in \mathcal{R} \iff Q = 0.$$

Proof.

If Q=0 then since, for any $\Phi\in dm(A), \phi$ is an algebra homorphism then $\phi(Q)=0$. Hence, $Q\in\ker\phi$ and then $Q\in\mathcal{R}$.

Conversely, if $Q \in \mathcal{R}$ then, for any $\Phi \in dm(A)$, we get $\langle Q | \Phi \rangle = 0$.

Let \mathcal{H} defined as being the monoid generated by dm(A) and by the Chen generating series $\{e^{t\,x}\}_{v\in Y}^{t\in\mathbb{C}}$.

Hence, Q is continuous over \mathcal{H} and it is indiscernable over \mathcal{H} . It follows then the expected result.

Corollary

We have $\mathcal{R} = \mathcal{R}_X$ (resp. \mathcal{R}_Y).

Ideal of relations (3/4)

Proposition

Let $\Phi \in dm(A)$ and let $t \in \mathbb{C}, x \in X$. For any proper polynomial $P \in (\mathbb{Q}[\mathcal{L}_{irr}X], \mathbb{m})$, if $\langle P \| \Phi \rangle = 0$ then $\langle P \| \Phi e^{t \times} \rangle = 0$ and $\langle P \| e^{t \times} \Phi \rangle = 0$.

Proof.

Since $P \in (\mathbb{Q}[\mathcal{L}_{irr}X], \mathbb{m}) \cong (\mathbb{Q}\langle X \rangle, .)$ and P is proper then, for any $t \in \mathbb{C}$ and for any $x \in X$, we have $\langle P \| e^{t \times x} \rangle = 0$ and then $\langle P \| \Phi e^{t \times x} \rangle = 0$. Since $\operatorname{supp}(P) \subset x_0 X^* x_1$, we also have $\langle P \| e^{t \times_0} \Phi \rangle = \langle P \triangleright e^{t \times_0} \| \Phi \rangle = 0$.

Next, for $\Phi \in dm(A)$, there existe e^C such that $e^{t \times_1} \Phi = e^{t \times_1} Z_{\text{III}} e^C$ and $e^{t \times_1} \Phi = e^{t \times_1} A_{\text{III}} e^C$ and $e^{t \times_1} \Phi = e^{t \times_1} A_{\text{III}} e^C$ and $e^{t \times_1} \Phi = e^{t \times_1} A_{\text{III}} e^C$ and $e^{t \times_1} \Phi = e^{t \times_1} A_{\text{III}} e^C$ and $e^{t \times_1} \Phi = e^{t \times_1} A_{\text{III}} e^C$ and $e^{t \times_1} \Phi = e^{t \times_1} A_{\text{III}} e^C$ and that we get the asymptotic behaviour $e^{t \times_1} \Phi = e^{t \times_1} A_{\text{III}} e^C$ and the concatenation $e^{t \times_1} A_{\text{III}} e^C = e^C$ and the concatenation $e^{t \times_1} A_{\text{III}} e^C = e^C$ holds.

Since $P \in \mathbb{Q}[\mathcal{L}_{irr}X]$ then, by the f Fliess' local realization theorem, there exists a differential representation (\mathcal{A}, f) such that $P = \sigma f_{|_{\Omega}}$.

Applying $\langle \sigma f_{|_0} \| \bullet \rangle$, one has $\langle \sigma f_{|_0} \| C_{z \leadsto 1-z_0} S_{z_0 \leadsto z} e^C \rangle = \langle \sigma f_{|_0} \| S_{z_0 \leadsto 1-z_0} e^C \rangle$. Hence, for $z_0 = \varepsilon \to 0^+$, one obtains $\langle \sigma f_{|_0} \| e^{t \times_1} \Phi \rangle \underset{\varepsilon \to 0^+}{\longrightarrow} \langle \sigma f_{|_0} \| \Phi \rangle$.

By assumption, $\langle \sigma f_{|_0} || \Phi \rangle = \langle P || \Phi \rangle = 0$, we get the expected result.

Ideal of relations (4/4)

Proposition

For any $\Phi \in dm(A)$, let $\Psi = B'(y_1)\Pi_Y\Phi$. Let $Q \in \mathbb{Q}[\mathcal{L}_{irr}X]$ (resp. $\mathbb{Q}[\mathcal{L}_{irr}Y]$) such that $\langle \Phi \| Q \rangle = 0$ (resp. $\langle \Psi \| Q \rangle = 0$). Then Q = 0.

Proof.

Let \mathcal{H} defined as being the monoid generated by Φ and by the Chen generating series $\{e^{t\,x}\}_{x\in X}^{t\in\mathbb{C}}$. By assumption, $\langle\Phi\|Q\rangle=0$ and then by the previous proposition, Q is indiscernable over \mathcal{H} . It follows Q=0.

Proposition

Let $\Phi \in dm(A), \Psi = B'(y_1)\Pi_Y\Phi$. Then, $\ker \phi = \mathcal{R}_X$ and $\ker \psi = \mathcal{R}_Y$.

Proof.

We saw $\mathcal{R}_X \subseteq \ker \phi$ and $\mathcal{R}_Y \subseteq \ker \psi$. Conversely, two cases can occur :

- 1. Case $Q \notin \mathbb{Q}[\mathcal{L}_{irr}X]$ (resp. $\mathbb{Q}[\mathcal{L}_{irr}Y]$). Hence, $Q \equiv_{\mathcal{R}_X} Q_1$ (resp. $Q \equiv_{\mathcal{R}_Y} Q_1$) such that $Q_1 \in \mathbb{Q}[\mathcal{L}_{irr}X]$ (resp. $\mathbb{Q}[\mathcal{L}_{irr}Y]$) and $\phi(Q_1) = 0$ (resp. $\psi(Q_1) = 0$). This reduce to the following
- 2. Case $Q \in \mathbb{Q}[\mathcal{L}_{irr}X]$ (resp. $\mathbb{Q}[\mathcal{L}_{irr}Y]$). Using the previous proposition, we get $Q \equiv_{\mathcal{R}_X} 0$ (resp. $Q \equiv_{\mathcal{R}_Y} 0$).

Then, \mathcal{R}_X (resp. \mathcal{R}_Y) contains ker ϕ (resp. ker ψ) respectively.