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INTRODUCTION

(Il était une fois le réve d’lcare)



(Classical) harmonic sums and polylogarithms
Harmonic sums and polylogarithms of order r > 0

N1 z"
H,(N):ZF and Lir(z) =) —.
n=1 n>1
(with N € Ny and |z] < 1).
From a theorem by Abel, one has
vr>1,  lim HA(N)= lim Li/(z ; —.
n

Ordinary generataring series (Ho(0) = 1 and H,(0) = 0, for r > 0)
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— E N _
N>0

=) H (N = iLir(z).

N>0




Polylogarithms, harmonic sums and polyzétas

Let wo(z) = dz/z and w1(z) =

the path zy ~+ z over wp, w; associated to xj, - -

dz/(1 — z). The iterated integral along
- Xj, € X* is defined by

z Zj—1
az (Ix-) =1 and af(x;...x;,)= / / wi (z1) ... wi (2k).
p) P

Then, for N € Ny, r > 0 and |z| < 1,

n

N
1
2

z
L. fd z r—1 — _ g
ir(z) = og(xg " x1) Z pr and H,(N)
n>1 n=1
For tthe multi-indices s = (sy,...,5,) :
ag(xgt™ ba ... xg'flxl) = Lis(z) =
n>...>n>0
Lig( N
Ps(z) = 1 i e Z Hg(N) 2", where Hy(N) = Z =
N>0 n>...>n=1

If s; > 1, by an Abel’s theorem, one has
lim Lis(z) = lim Hg(N) = ((s)
z—1 N— oo

m>..>n>01 """
else ?
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Starting with Euler-Maclaurin summation formula

k—1
1 B 1 1
2 '°g’V+”"Zj/w+O(Nk)’

n .
N>n>1 j=1

1 N1-r k—1 B i1 (k—1\ 1 1
N;:Zln (r—1) J;J—Hrl Jj—1) N Nk

where the B;’s are the Bernoulli numbers.

For any s = (s1,...,s,), there exists algorithmically computable
¢ €Z,0;€Z,pjeNand b; € Z',k; € N,n; € Z such that

—_— +OO

Lig(z) z—=1 Y ¢(1-2)%log’(1-2),
j=0

+o00
Hy(N) N — 400 Y biN"log"(N),
i=0

where Z is the Q-algebra generated by convergent polyzétas
and Z' is the Q[y]-algebra generated by convergent polyzétas.



Examples by computer

Example (convergent case)
Li1(z)=¢(3)+ (1 —z)log(l —z) — 1 — 7(1 — z)log?(1 — 2)

+ (1 - 2)? —Zlog (1—Z)+4log(1—z)] +

log(N) + 1 log(N
og(N) +1+7 _log(N)

Ha1(N) =¢(3) — N oN

Example (divergent case)
Lira(z) = 2 - 2(3) - ¢(2) log(1 — 2) — 2(1 - 2) log(1 - )

+ (1 _ Z) |Og2 i + (1 o 2)2 [logZ(; — z) B |Og(12— Z):| L

Hyo(N) = C(2)7 — 2(3) + ¢(2) log(W) + *ELE2 1

C(2)y = .94948171111498152454556410223170493364000594947366 .



Encoding the multi-indices by words

Y={wlkeNi} (1 >y2>...)and X = {xo,x1} (x0 < x1).

Y* (resp. X*) : monoid generated by Y (resp. X).
S=(S1,.-sS) G W=Yyg .Y W= Tx G

Let mx : C{Y) — C{X) and 7y : C{(X)) — C{Y)) denote the

“change” of alphabets over C{(X)) and C{(Y)) respectively

Li, :w +— Li,(2)=
m>..>n>0 1

Hy,:w —~ H,(N)= Z G]

nt...ony’
N>nm>...>n>0
Pyiw o Pyfe)= Y H (W) = 2
w - w w 1 —z b)
N>0
1
Gwiw = ((w)= Z poam—

m
m>...>n,>0

w is convergent if 53 > 1. A divergent word is of the form

k k k., Sk+1—1 s—1
{1} skq1s - 050) @ N Vs -+ Ys, XX X1 xg xi, for

k> 1.



Structure of polylogarithms and harmonic sums
Putting Li,(z) = log z then

L1@<X> — Q{LiW}WEX*7
w +— Liy,

becomes an isomorphism from (Q(X),m) to (Q{Liw }wex=,.) and

H:Q<Y> — Q{HW}WGY*a
w — Li,

becomes an isomorphism from (Q(Y), w) to (Q{Hu }wey~,.).
Thus,
» {Liy }wex~ are Q- linearly independent and then {Li;}/czynx
are (Q-algebraically independent.
» {Hy}wex~ are Q-linearly independent and then {H;}czyny
are Q-algebraically independent.

Therefore, {C(/)}iecynx—{xopa} @nd {C(1)}iecyny—{y,} are two
families of generators of the (Q-algebra Z.



Towards the structure of polyzétas

Corollary
Yu,v € X*,Li, Li, = Liym, = Yu,v € xX*x1,{(u){(v) = {(umv).
Example XoXIIXGX] =  XoX1Xax1 + 3xgxixox1 + 6x3x7,

Li, Lis = Liz,g +3 Ligyz +6 Li4717

€(2)¢(3) = ¢(2,3)+3¢(3,2) +6¢(4,1).

Corollary
Yu,ve Y HH, =Hyuw, = Vu,ve Y*\ 1 Y*, ((u)(v) = {(uwv).
Example yauwlys = yays+ysy2+ s,

HpH; = Hp3+ Hso+ Hs,

C(2)<B) = €(2,3) +((3,2) +¢(5)-

E(Q)C(g) - 2(3 3’ TEER oY } = ((5) = 2¢(3,2)+6((4,1).



Polynomial relations on {C(/)}/csynx\{xx} DY computer
= < /

¢@2.1)

¢(2,1,1)
¢(4,1)
€3,2)
€B3,1,1)
€(2,2,1)
¢(2,1,1,1
¢(6

S

)
)
¢(5,1)
¢(4,2)
¢(4,1,1)
€(3,2,1)
¢(3,1,2)
¢(3,1,1,1)
¢(2,2,1,1)

¢(2,1,1,1,1)

2

glc(z)2

E<(2>2

2cer

26(5) - @K
~2C(5) +36C))
26(5) - ¢(2)C3)
—2C(8) +36(2)¢E)
o)

5oy

35



Irreducible polyzétas by computer

r : deph of ¢(s1

,,,,,

1 2 3 4 5
n
2 <)
3 <3)
5 ¢(®)
7 <)
8 ¢(6,2)
9 €(9)
10 ((8,2)
11 ¢(11) ¢(8,2,1)
12 ¢(10,2) ¢(8,2,1,1)
13 ¢(13) ¢(9,3,1)
¢€10,2,1)
14 ¢(10, 4) ¢(10,2,1,1)
¢(12,2)
5 || ¢(15) C(L,3,1) C(10,2,1,1,1)
¢(12,2,1)
16 ¢(1 ) ¢(10,4,1,1)
¢(1 ¢(11,3,1,1)
¢(12,2,1,1)
Sr), n=s + ...+ s : weight of {(s

.....



It was conjectured (since 1997)

» For any Lyndon word X\, (()) is a polynomial on the
irreducible polyzétas ((¢), with ¢ € LynX and |¢| < |\| ?
» Thus, by a Radford’s theorem, for any convergent word
A, ((\) polynomial on the polyzétas irreducible ((¢), with
e LynX and || < |\ ?
» Moreover, these polynomial relations are homogenous 7
» The Q-algebra of convergent polyzétas
> is free 7
> s graded by weight ?
» The irreducible polyzétas constitute a transcendence basis for
the Q-algebra Z 7

» FEach convergent polyzéta is a transcendental number 7



BIALGEBRA AND BASES IN DUALITY

(La conquéte de Mars ...)



Shuffle bialgebra and Schutzenberger's factorization
Let LynY be the set of Lyndon words over Y.

P = / forl e,

P = [Ps, P/ forl € LynY \'Y,
standard factorization of / = (s, r),

Py=  Pl...P} forw=Il. [k
h>...>hh....lk € LynY.

S = 1 for | = 1x«,

S = xSy, for | = xu € LynY,

S .. mS o
Sy = — — forw =/ lf,

AR
h>...>l,h....Ix € LynY.

Theorem (Schiitzenberger, 1958)

—

Z wew = Z Sy ® P, = H exp(S; ® P).

wey* wey* leLynY



The ¢-deformed shuffle bialgebra

This product is defined by umgly« = ly«mgu = u and
yiumgyjv = yj(yiumgv) + yi(umgy;v) + ¢(yi, y;)(yiumgv), where
Q) RQY) —QY),  dviy) = >, v
kelcN
and is supposed to be an associative and commutative law of

algebra and it is localy finite, i.e. #{(i,j) € N2|c # 0} < 400,
for k € N. This suggests an associated coproduct deflned by

Vyk €Y, Am,(vk) = Yk®1+1®Yk+AH1¢(yk)

AL, = ) iy
i+j=k
satisfying (Am, (w)|u ® v) = (w|umgv) and if wg(b)(yk) is a

homogenous polynomial of deg yx = k and is given by
(¢) _ (1)Kt +(k—1)
m (W)_ZT Y (AL Tl ® ... @
k>1 Uy, u €Yt

then Am, (7' () = 7 () @ 1+ 1 @ 79 ()

.. Ug.



Particular case of deformation : g-shuffle bialgebra
The g-shuffle product defined by

UI_Hq]_y* = ].y*HIqU = u,
yiumgyjv = yi(umqyjv) + yj(viumeyv) + qyiyj(yiumgv),
and its associated coproduct is defined respectively by

Vi €Y, B, (k) = @1+1@yc+q > yi®y;
i+j—k

satistying (Am, (w)|u ® v) = (w|umgv) and if qu)(yk) is a

homogenous polynomial of deg yx = k and is given by

qu)(yk = k—i—Z Z Vi Yj-

i>2 J1ei21
J1t+--tHiji=k

then A, (79 () = 7V () @1+ 1@ 7 ().

Examples, with g = +1,0, —1, lead respectively to stuffle,
shuffle,minus-stuffle products.



Structure of my

Theorem
Let A be a commutative ring (with unit) and ¢ : AY @ AY — AY
be an associative and commutative law on AY. Then
i) IfQC A, A= (A(Y),mg, ly+) admits LynY, the set of
Lyndon words over Y, as a transcendence basis.
ii) If ¢ is localy finite, let A, : AY — AY ®@ AY denotes its
dual comultiplication, then
a) By = (A(Y),conc, 1x+, Am,,¢€) is a bialgebra.
b) If A is a field of characterstic O then By is an enveloping
bialgebra if and only if the algebra AY admits an increasing
filtration ((AY),,) , with (AY)o = {0} compatible with (the

ne
multiplication and) the comultiplication Ay, i.e.

A, ((AY)s) C ) (AY), @ (AY),.



Convolutional CQMM theorem

Theorem
Let B be a k-cocommutative bialgebra (k is a field of characteristic
zero). Then, the following conditions are equivalent :

i) B admits an increasing filtration
Bo=klgC By C--- CB,,CB,H_l--'

compatible with the structures of algebra (i.e. for all p,q € N,
one has BpBy C Bpiq) and coalgebra :

VneN, AB))C > B,®B,
p+q=n

ii) B =k_pialg U(Prim(B)) is an enveloping algebra.



Pair of bases in duality in ¢-deformed shuffle bialgabra

M= 920) foriey,
M, = [Ns,N,], forle LynX, standard factorization of | = (s, r),
Mw= N} NE forw=I} [l h>..>hh.. |l€LynY.

Then Lieg(Y) is freely generated by the family {[,}/czyny. Thus,
the free associative Q(Y') is the enveloping algebra of Lieg(Y).

Theorem
Let {¥, }wey+ be the dual basis of {1y }yecy+ :

Yu,v e Y, (Xy|My) = by

%
Then Z wRw = Z >, @My = H exp(X; ® ).
wey* weyY* leLynY

Note that, for any Lyndon word /,I1; and ¥, are triangular and are
homogenous polynomiale of degre |/|, with deg(yx) = k.



NONCOMMUTATIVE GENERATING SERIES

(La vie sur Mars ...)



Noncommutative generating series of polyzétas (1/2)
Let X = {x0,x1} and Y = {Yi}i>1.

Definition
= Y Liy(z2)w and H(N):= ) Hy(N)w
weX* weyY*

Theorem (HNM, 2009)

Apl.=L®L and ALH=H®H,
L(z):emgiL 2(2)€9°82  and H(N) = MM (W),

N\
where Lyeg(2) = H elis(2) Pr gpd Hyeg(N) = H etz (M)

leLynX IeLynY
1#x0,x1 I#y1

Definition
Zm = Lyeg(1l)  and  Zu = Hyeg(00).



Noncommutative generating series of polyzétas (2/2)

= e
Zm = H exp[¢(S)P)] and Zu = H exp[C(Z)M)].
leLynX,l#xqy,x1 1ELYNY ,I#y1

L(z) ~7 expl—xilog(1l— z)]Zu.

H(N) —~— exp{—ZHyk(N)(_y )k}mzm.

1
k
k>1

Theorem (HNM, 2005)

For any w € Y*, let ,, be the Euler-Maclaurin constant associated to

H,. Let
Z, = Z Y W.
weyY*

Then AwZ, =2, Z, and Z, = B(y1)ny Zm = € Z\+y, where

Nk
B0n) = |-+ o0 L) and 800 i e B().
k>2



Generalized Euler constants

By specializing at

t1 =7
and
vi>2, = (-1 -1)1¢)
in the Bell polynomials b, k(t1, ..., tk), we get
Corollary
_ (=1)" af S22\ (k) \ ™
W= 2l ol sl 2 ) o\ Tk )

S1yees s, >0
51+.H+ksk:k+1

L (x —x1) T xw !
e = 3 L0l umcn]) [Eljbu(%—4(2),24(3»...)}.
i=0 =

1!



Generalized Euler constants by computer

V1,1

Y1,1,1

Y1,1,1,1

71,7

71,1,6

Y1,1,1,5

7 —¢(2)
)
7 = 302) +20(3)
6 9
80¢(3)y — 60¢(2)72 + 6¢(2)? + 10+*
240 ’
(T +CB)E) — 1o l2)
LGP +1E)6) + SCBRY ~ 4Ty
((6:2) + 520(2)* + 5C2)C3) — 4(3)C(6),
20(6,2) — S C3)() + 3023 + 1 (2)’

(201 = 3¢@)5)+ 152 )

(G007 - 56@° )2 + getsn>



Polynomial relations among generators of polyzétas (1/3)

Let A be a commutative Q-algebra.
Let & € A(X)) s.t. Am(P) = @ d. Then there exists an unique
C € Liea(( X)) s.t. & = ZyeC.

dm(A) = {Ze€|C € Liea( X)), (e|x0) = (e%|x1) = 0}
For any ® = Z,e¢ € dm(A), let W and V' € A(Y)) s.t.
V= B(y1)7ry¢ and V' = B/(yl)ﬂ'yd),

)k
where B() = exp| <+ <00 | B0) = B0,
k>2
The polynomial relations with coefficients in A among generators

of polyzétas can be obtained by identifying the coefficients in

Vo e dm(A), V= B(yl)ﬂyq) = V= B/(yl)ﬂ'y(b.

Theorem
If v ¢ A then ~ transcendental over the A-algebra generated by
convergent polyzétas.



Polynomial relations among generators of polyzétas (2/3)
For any ® € dm(A), let WV = B'(y1)my®. Then

.
b= Z d(w) w = H (S Pr.

wex* I€ LynX
I#x0,x1
N
V= Z P(w) w = H e?EN M,
weyY* IeLynY
I#y1
Therefore,
3 #(S)) P (—x1)* - (E) N
He”:exp—ZC(k) p 71')(He n
leLynX k>2 I€ELYnY
I#x0,x1 I#y1

In particular, if & = Z;, and V = Z., then

A =)\ T
H eSS P — exp<_ZC(k) kl >7TX H SN M

leLynX k>2 leLynY
1#x0,x1 I#y1




Polynomial relations among generators of polyzétas (2/3)

ﬁ L0 _ exp< 0 ) H 40

LeLynX k>2 LeLynY
L#x0,X1 L#£y1

Since V0 € LynY <= 7wx{ € LynX \ {xo} then identifying the
local coordinates, we get polynomial relations among the
generators which are algebraically independent on ~.

Theorem

Fort € LynY — {y}, let P, € Lieg(X) be the decomposition of
mxl in a PBW basis and let P, € Q[LynX — {xo,x1}] be its dual.
Then xt — Py € ker 0.

In particular, for ¢ = ¢ one gets mx/ — Py € ker (.

If Tx¢ = P, then ¢(¢) is Q-irreductible.

Moreover, V£ € LynY — {y1},myl — P, € Q(Y) is homogenous
of degree equal |¢| > 2.



Structure of polyzétas

Theorem

The Q-algebra generated by convergent polyzétas is isomorphic to
the graded algebra (Q & (Y — y1)Q(Y)/ ker ¢, ).

Proof.

Since ker ( is an ideal generated by the homogenous polynomials
then the quotient Q @ (Y — y1)Q(Y)/ ker ( is graded. O
Corollary

The Q-algebra of polyzétas is generated by Q-irreducible polyzétas.

Proof.

For any A € LynY, if A\ = P then one gets the conclusion else
7x\ — Py € ker (. Since Py ¢ Q[LynX] then P, is polynomial on
Lyndon words of degree < |\|. For each Lyndon word does appear
in this decomposition of Py, after applying Ty, the same process
goes on untill having irreducible polyzétas. O



THANK YOU FOR YOUR ATTENTION

(Mars brule-t-il 7)



Continuity and indiscernability (1/2)

Definition
Let H be a class of formal power series over X. Let S € C{(X)).
1. S is said to be continuous over H if for any ® € H, the sum below
is normally convergent and we denote (S||®) this sum

> (Slw)(e | w).

wexX*
The set of continuous power series over H is denoted by C™ ((X)).

2. S is said to be indiscernable over H if and only if
VO M, (S[P)= D (S|lw)(dlw)=0.

weX*

Definition
Let S € Q((X)) and let P € Q(X). The left residual (resp. right residual)
of S by P, is the formal power series P < S (resp. S P) in QX))

defined by :
(P<S|w) = (S|wP) (resp. (S> Plw) = (5|Pw)).



Continuity and indiscernability (2/2)

Lemma

Let H be a monoid containing strictly {et*}'S5. Let

S € C"(X)) being indiscernable over H. Then for any x € X,
x<S and St x belong to C™((X)) and they are indiscernable
over H.

Proposition
teC

Let H be a monoid containing strictly {e**} =5 . The power series
S € C"(X)) is indiscernable over H if and only if S = 0.

Proof.

If S =0 then it is immediate that S is indiscernable over H.
Conversely, if S is indiscernable over ‘H then, for any word w € X*,
by induction on the length of w, w < S is indiscernable over H and
then in particular,

(w < S|Idg) = (S | w) = 0.

In other words, S = 0. O



|deal of relations (1/4)

Definition
Let Q; be the decomposition of the proper polynomial My ¢ — P, (resp.
Mx? — Py) in LynY (resp. LynX). Let

Ry = {Qe}ZGEanf{yl}v

RX = {Qé}fellynxf{xo,xl}
and

LinY ={€ LynY —{y1} | Q =0},
LinwX :={l € LynX — {x0,x1} | Q¢ = 0}.
It follows that
Q[LynY —{n}],w) = (Ry,w)®(QLinY], w),
(Q[LynX — {x0, x1}], m) (Rx,m) © (Q[Lir X], ).

Lemma

For any ® € dm(A), let ¥ = B'(y1)[1y®. We have Ry C kert and
Rx C ker ¢. In particular, Ry C ker( and Rx C ker(.

Proposition

Rx CR:= ﬂ ker¢ (resp. Ry CR:= ﬂ ker ).

®Edm(A) Yy



|deal of relations (2/4)

Proposition
For any proper polynomial Q € Q[L;X] (resp. Q[LirY]),

ReR «— @=0.

Proof.

If Q@ = 0 then since, for any ® € dm(A), ¢ is an algebra
homorphism then ¢(Q) = 0. Hence, Q € ker ¢ and then Q € R.
Conversely, if Q € R then, for any ® € dm(A), we get (Q|P) = 0.
Let H defined as being the monoid generated by dm(A) and by the
Chen generating series {e!* iee(i

Hence, Q is continuous over H and it is indiscernable over H. It
follows then the expected result. O

Corollary
We have R = Rx (resp. Ry ).



|deal of relations (3/4)

Proposition

Let ® € dm(A) and let t € C,x € X. For any proper polynomial
P € (Q[LinX], m), if (P|®) = 0 then (P|®e'*) =0 and (P|e* *®) = 0.

Proof.

Since P € (Q[LX],m) = (Q(X),.) and P is proper then, for any t € C
and for any x € X, we have (P|e'*) = 0 and then (P|®e!*) = 0.

Since supp(P) C xoX*x1, we also have (P|e! *®) = (P> et *|d) = 0.

Next, for ® € dm(A), there existe e€ such that et 1 ® = et X1 Z;e¢ and
etxgp — — xl(t+|oga)5€w1_sexo log e eC.

Hence, there exists a Chen generating series C,..,1_5 and S, .,1_5 such

that we get the asymptotic behaviour e! X ¢ fvrs Czwl,ZOSZOWZeC and

the concatenation C,.1_;, S, ..€° = S, 1_5,eC holds.

Since P € Q[L;,X] then, by the f Fliess' local realization theorem, there

exists a differential representation (A, f) such that P = of.

Applying (7] &), one has (£, | Coorr sy ez €€) = (0F, [Seprt ).
Hence, for zg = ¢ — 07, one obtains (ofj e’ 1) —o (o [®).

By assumption, (of|,|®) = (P|®) = 0, we get the expected result. O




|deal of relations (4/4)

Proposition
For any ® € dm(A), let V = B'(y1)My®. Let Q € Q[L;X] (resp.
Q[LiY]) such that ($|Q) =0 (resp. (V|Q) =0). Then Q = 0.

Proof.
Let #H defined as being the monoid generated by ® and by the Chen

generating series {e”}i@i. By assumption, (®|Q) = 0 and then by the

previous proposition, Q is indiscernable over H. It follows @ = 0. O
Proposition

Let ® € dm(A),V = B'(y1)My®. Then, ker = Rx and kerip) = Ry.
Proof.

We saw Rx C ker ¢ and Ry C ker). Conversely, two cases can occur :

1. Case Q ¢ Q[LiX] (resp. Q[LiY]). Hence, Q =x, @1 (resp.
Q =r, @) such that @ € Q[L;rX] (resp. Q[L;Y]) and
d(@1) = 0 (resp. ¥(Q1) = 0). This reduce to the following

2. Case Q € Q[LinX] (resp. Q[LjY]). Using the previous
proposition, we get Q =, 0 (resp. Q =r, 0).

Then, Rx (resp. Ry) contains ker ¢ (resp. ker 1)) respectively. El



