Queueing Network and Some Types of Customers and Signals

Thu-Ha Dao-Thi

Chargée de recherche CNRS, PRiSM, UVSQ, France

Joint work with J.M Fourneau, J. Mairesse, M.A Tran

VMS-SMF Joint Congress, Hue, August 23th 2012

イロト イ理ト イヨト イヨト

0-automatic queues and networks

- Introduction of 0-automatic queues
- Results on 0-automatic queues and networks
- 3 Some new types of signals in G-networks

イロト イポト イヨト イヨ

- Queue? Network?
- 2 0-automatic queues and networks
 - Introduction of 0-automatic queues
 - Results on 0-automatic queues and networks

< 🗇 🕨

- < ≣ → <

- 2 0-automatic queues and networks
 - Introduction of 0-automatic queues
 - Results on 0-automatic queues and networks
- Some new types of signals in G-networks

- (E) - (

2 0-automatic queues and networks

- Introduction of 0-automatic queues
- Results on 0-automatic queues and networks

3 Some new types of signals in G-networks

イロト イポト イヨト イヨ

Queue? Network?

In daily life

Dao Ha Queueing Network and Some Types of Customers and Signals

Queue? Network?

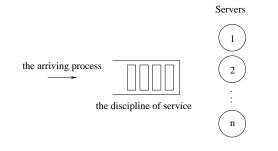
Mathematical study

A.K. Erlang (1909): queue of telephones

Kendall nomenclature (1953): A/S/n/K/D

- A : inter-arrival time distribution
- S : service time distribution

- n : number of servers
- *K* : capacity of the buffer
- D : discipline of service
 First In First Out, LIFO,
 PS, . . .


ヘロト ヘワト ヘビト ヘビト

ъ

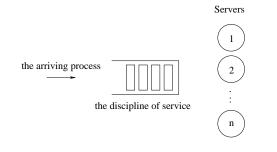
Queue? Network?

Mathematical study

A.K. Erlang (1909): queue of telephones

n : number of servers

- *K* : capacity of the buffer
- D : discipline of service
 First In First Out, LIFO,
 PS, . . .


Kendall nomenclature (1953): A/S/n/K/D

- A : inter-arrival time distribution
- S : service time distribution

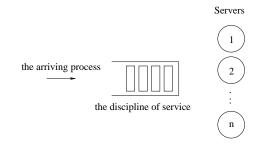
Queue? Network?

Mathematical study

A.K. Erlang (1909): queue of telephones

Kendall nomenclature (1953): A/S/n/K/D

- A : inter-arrival time distribution
- S : service time distribution


- *n* : number of servers
- *K* : capacity of the buffer
- D : discipline of service
 First In First Out, LIFO,
 PS....

《□▶《문》《토》《토》 토 ♡९(Queueing Network and Some Types of Customers and Signals

Queue? Network?

Mathematical study

A.K. Erlang (1909): queue of telephones

Kendall nomenclature (1953): A/S/n/K/D

- A : inter-arrival time distribution
- S : service time distribution

- *n* : number of servers
- K : capacity of the buffer
- D : discipline of service
 First In First Out, LIFO,
 PS. . . .

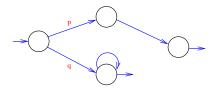
Network

Queue? Network?

Queues can be connected to form queueing networks

Jackson network Probabilistic routing Kelly network fixed routing

Dao Ha Queueing Network and Some Types of Customers and Signals

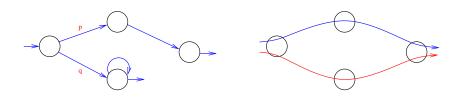

・ロト ・ 同ト ・ ヨト ・ ヨト

Network

Queue? Network?

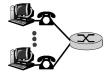
Queues can be connected to form queueing networks

Jackson network Probabilistic routing fixed routing


★ E > ★ E

Network

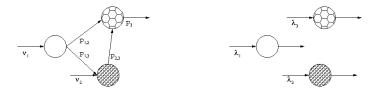
Queues can be connected to form queueing networks


Queue? Network?

Jackson network Probabilistic routing Kelly network fixed routing

→ E > < E</p>

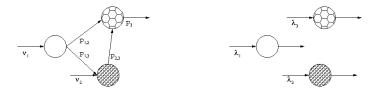
Application



Queue? Network?

Queue? Network?

Product form solution



Product form: a network \iff independent queues

Jackson network (1957), BCMP network (Baskett et al, 1975), Kelly network (1979), G-network (Gelenbe, 1989)

Queue? Network?

Product form solution

Product form: a network \iff independent queues

Jackson network (1957), BCMP network (Baskett et al, 1975), Kelly network (1979), G-network (Gelenbe, 1989)

0-automatic network (Dao Thi and Mairesse)

Queue? Network?

Network with signals

- 90s: Negative customer (Gelenbe)
- Some types of signals:
 - Reset, catastrophe, batch (Gelenbe, 1993, 2002, Chao, 1995)
 - Negative signal, positive signal (Chao et al, 1999)
- Service time: exponential, Cox
- Recent results (Dao Thi, Fourneau and Tran, 2010, 2011, 2012):
 - New types of signals: change class, group-deletion signal,...
 - Service PH: signal change phase

イロト イポト イヨト イヨト

Queue? Network?

Network with signals

- 90s: Negative customer (Gelenbe)
- Some types of signals:
 - Reset, catastrophe, batch (Gelenbe, 1993, 2002, Chao, 1995)
 - Negative signal, positive signal (Chao et al, 1999)
- Service time: exponential, Cox
- Recent results (Dao Thi, Fourneau and Tran, 2010, 2011, 2012):
 - New types of signals: change class, group-deletion signal,...
 - Service PH: signal change phase

イロト イ理ト イヨト イヨト

ntroduction of 0-automatic queues Results on 0-automatic queues and networks

Outline

2 0-automatic queues and networks

- Introduction of 0-automatic queues
- Results on 0-automatic queues and networks

3 Some new types of signals in G-networks

イロト イポト イヨト イヨ

Introduction of 0-automatic queues Results on 0-automatic queues and networks

Two first examples of (0-automatic) queues

The simple queue $M/M/1/\infty/FIFO$

- Buffer content: $n \in \mathbb{N}$
- An arrival: $n \rightarrow n+1$
- Stability condition: $\lambda < \mu$

• Stationary distribution: $\pi(n) = (1 - \frac{\lambda}{u}) (\frac{\lambda}{u})^n$

 \rightarrow a trivial random walk (r.w.) on (\mathbb{N} , +), jumps +1.

- 2 types of customers: $\{1\}, \{-1\}$. Buffer content: $n \in \mathbb{Z}$
- {1}-customer: $n \rightarrow n+1$, {-1}-customer: $n \rightarrow n-1$
- ν : probability measure on $\{-1, 1\}$.
 - ightarrow a r.w. on (Z, +), jumps ± 1 according to u

Introduction of 0-automatic queues Results on 0-automatic queues and networks

Two first examples of (0-automatic) queues

The simple queue $M/M/1/\infty/FIFO$

- Buffer content: $n \in \mathbb{N}$
- An arrival: $n \rightarrow n+1$
- Stability condition: $\lambda < \mu$

• Stationary distribution:

$$\pi(n) = \left(1 - \frac{\lambda}{\mu}\right) \left(\frac{\lambda}{\mu}\right)^n$$

 Burke theorem: departure process is Poisson of rate λ

 \rightarrow a trivial random walk (r.w.) on ($\mathbb{N},+),$ jumps +1.

- 2 types of customers: $\{1\}, \{-1\}$. Buffer content: $n \in \mathbb{Z}$
- {1}-customer: $n \rightarrow n+1$, {-1}-customer: $n \rightarrow n-1$
- ν : probability measure on $\{-1, 1\}$.
 - ightarrow a r.w. on (Z, +), jumps ± 1 according to u

Introduction of 0-automatic queues Results on 0-automatic queues and networks

Two first examples of (0-automatic) queues

The simple queue $M/M/1/\infty/FIFO$

- Buffer content: $n \in \mathbb{N}$
- An arrival: $n \rightarrow n+1$
- Stability condition: $\lambda < \mu$

• Stationary distribution:

 $\pi(n) = (1 - \frac{\lambda}{\mu}) (\frac{\lambda}{\mu})^n$

 Burke theorem: departure process is Poisson of rate λ

 \rightarrow a trivial random walk (r.w.) on ($\mathbb{N},+),$ jumps +1.

- 2 types of customers: $\{1\}, \{-1\}$. Buffer content: $n \in \mathbb{Z}$
- {1}-customer: $n \rightarrow n+1$, {-1}-customer: $n \rightarrow n-1$
- ν : probability measure on $\{-1$

Introduction of 0-automatic queues Results on 0-automatic queues and networks

Two first examples of (0-automatic) queues

The simple queue $M/M/1/\infty/FIFO$

- Buffer content: $n \in \mathbb{N}$
- An arrival: $n \rightarrow n+1$
- Stability condition: $\lambda < \mu$

• Stationary distribution:

 $\pi(n) = (1 - \frac{\lambda}{\mu}) (\frac{\lambda}{\mu})^n$

 Burke theorem: departure process is Poisson of rate λ

 \rightarrow a trivial random walk (r.w.) on ($\mathbb{N},+),$ jumps +1.

- 2 types of customers: $\{1\}, \{-1\}$. Buffer content: $n \in \mathbb{Z}$
- {1}-customer: $n \rightarrow n+1$, {-1}-customer: $n \rightarrow n-1$
- ν : probability measure on $\{-1, 1\}$.
 - \rightarrow a r.w. on (Z, +), jumps ±1 according to ν

Introduction of 0-automatic queues Results on 0-automatic queues and networks

Combine 2 models

- Set of possible types: $\Sigma = \{a, b, b^{-1}\}.$
- Buffer content: a word in

$$L = \{ u_k \cdots u_1 \in \Sigma^* \mid \forall i, \ u_{i+1} u_i \notin \{ bb^{-1}, b^{-1}b \} \}.$$
(1)

Customers of type a, b, b^{-1} are resp. in black, red and white.

 ν: probability measure on Σ.
→ buffer content evolves as a Markov chain on L, a r.w. induced by ν on {a}* * F(b)

Introduction of 0-automatic queues Results on 0-automatic queues and networks

Combine 2 models

- Set of possible types: $\Sigma = \{a, b, b^{-1}\}.$
- Buffer content: a word in

$$L = \left\{ u_k \cdots u_1 \in \Sigma^* \mid \forall i, \ u_{i+1} u_i \notin \{bb^{-1}, b^{-1}b\} \right\}.$$
(1)

Customers of type a, b, b^{-1} are resp. in black, red and white.

- ν : probability measure on Σ .
 - \rightarrow buffer content evolves as a Markov chain on L,

a r.w. induced by ν on $\{a\}^* \star \mathbb{F}(b)$

Introduction of 0-automatic queues Results on 0-automatic queues and networks

4 types of "tasks"

Classical type.

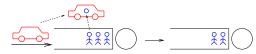
Positive/negative type.

"One equals many" type.

"Dating agency" type.

・ロト ・ 同ト ・ ヨト ・ ヨト

э


Introduction of 0-automatic queues Results on 0-automatic queues and networks

4 types of "tasks"

Classical type.

Positive/negative type.

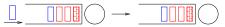
"One equals many" type.

"Dating agency" type.

・ロト ・ 同ト ・ ヨト ・ ヨト


Introduction of 0-automatic queues Results on 0-automatic queues and networks

4 types of "tasks"


Classical type.

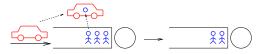
Positive/negative type.

"One equals many" type.

"Dating agency" type.

イロト イポト イヨト イヨト

ъ


Introduction of 0-automatic queues Results on 0-automatic queues and networks

4 types of "tasks"

Classical type.

Positive/negative type.

"One equals many" type.

"Dating agency" type.

Introduction of 0-automatic queues Results on 0-automatic queues and networks

Result for 0-automatic queues

For FIFO 0-automatic queues:

- Stationary distribution and stationary condition
- Burke theorem for departure process: Poisson

 \longrightarrow Consider the Jackson-like and Kelly-like network of 0-automatic queues

Dao-Thi and Mairesse, Adv. in Appl. Probab., 39(2) 2007.

イロト イポト イヨト イヨト

Introduction of 0-automatic queues Results on 0-automatic queues and networks

Result for 0-automatic queues

For FIFO 0-automatic queues:

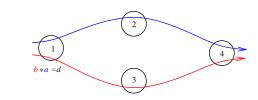
- Stationary distribution and stationary condition
- Burke theorem for departure process: Poisson

 \longrightarrow Consider the Jackson-like and Kelly-like network of 0-automatic queues

Dao-Thi and Mairesse, Adv. in Appl. Probab., 39(2) 2007.

イロト イポト イヨト イヨト

Introduction of 0-automatic queues Results on 0-automatic queues and networks


Results on 0-automatic networks

Jackson-like network: Routing matrix $P = (p_{ij})_{ij}$

P₁₂

P13

d₁ λ₁ Kelly-like network : fixed routing Fusion case b * a = d :

Product-form solution: $\pi(u, \alpha) = \prod_i \pi^i(u^i, \alpha^i)$

Dao-Thi and Mairesse, Discrete Event Dynamic Systems, V 18, N4, 2008

Introduction of 0-automatic queues Results on 0-automatic queues and networks

Results on 0-automatic networks

Jackson-like network: Routing matrix $P = (p_{ij})_{ij}$

 p_{12}

P13

d₁ λ₁ Kelly-like network : fixed routing Fusion case b * a = d :

Product-form solution: $\pi(u, \alpha) = \prod_i \pi^i(u^i, \alpha^i)$

Dao-Thi and Mairesse, Discrete Event Dynamic Systems, V 18, N4, 2008

Outline

2 0-automatic queues and networks

- Introduction of 0-automatic queues
- Results on 0-automatic queues and networks

Some new types of signals in G-networks

< □ > < 同 > < 三 > <

Synchronised arrivals and group-deletion signals

Positive signal (X.Chao et al, 1999) : add a customer to a queue

Synchronised arrivals: a signal will add one customer to some queues in the network *Dao Thi, Fourneau and Tran, Performance Evaluation, V68, 2011*

Group-deletion signals: delete all customer of the same class at the back-end of the buffer Dao Thi, Fourneau and Tran, EPEW 2011

イロト イポト イヨト イヨト

ъ

Synchronised arrivals and group-deletion signals

Positive signal (X.Chao et al, 1999) : add a customer to a queue

Synchronised arrivals: a signal will add one customer to some queues in the network Dao Thi, Fourneau and Tran, Performance Evaluation, V68, 2011

Group-deletion signals: delete all customer of the same class at the back-end of the buffer Dao Thi, Fourneau and Tran, EPEW 2011

イロト イポト イヨト イヨト

Change-class signal and change phase signal

Change-class Signal:

- Signal S_{a,b}: a-customer → b-customer
- S_{a,b} * a = b → link with 0-automatic mechanism Dao Thi, Fourneau and Tran, ASMTA 2010
- Change-phase Signal:
 - Phase-type service time
 - Changing-phase signal: skip a phase of service Dao, Fourneau, Tran, The Computer Journal, V54, 201

ヘロン ヘアン ヘビン ヘビン

Change-class signal and change phase signal

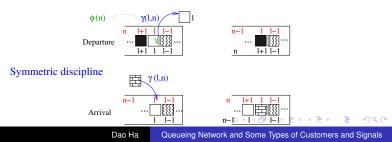
Change-class Signal:

- Signal S_{a,b}: a-customer → b-customer
- S_{a,b} * a = b → link with 0-automatic mechanism Dao Thi, Fourneau and Tran, ASMTA 2010

Change-phase Signal:

- Phase-type service time
- Changing-phase signal: skip a phase of service Dao, Fourneau, Tran, The Computer Journal, V54, 2011

イロト イポト イヨト イヨト


Change-class signal and change phase signal

Change-class Signal:

- Signal S_{a,b}: a-customer → b-customer
- $S_{a,b} * a = b \longrightarrow$ link with 0-automatic mechanism Dao Thi, Fourneau and Tran, ASMTA 2010

Change-phase Signal:

- Phase-type service time
- Changing-phase signal: skip a phase of service Dao, Fourneau, Tran, The Computer Journal, V54, 2011

イロン イロン イヨン イヨン

æ