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Gcd algorithms and beyond

We want to
compute the gcd of n numbers

n = 3 or n large
small/big size
same size/different sizes

find Bezout’s coefficients : extended gcd

find simultaneous rational approximations

How to compare multidimensional gcd algorithms ?
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Euclid algorithm
We start with two nonnegative integers u0 and u1

u0 = u1

[
u0

u1

]
+ u2

u1 = u2

[
u1

u2

]
+ u3

...

um−1 = um

[
um−1

um

]
+ um+1

um+1 = gcd(u0,u1)

um+2 = 0

One subtracts the smallest number to the largest as
much as we can
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Euclid algorithm and continued fractions

We start with two coprime integers u0 and u1

u0 = u1a1 + u2

...

um−1 = umam + um+1

um = um+1am+1 + 0

um+1 = 1 = gcd(u0,u1)
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We start with two coprime integers u0 and u1

u0 = u1a1 + u2

...

um−1 = umam + um+1

um = um+1am+1 + 0

um+1 = 1 = gcd(u0,u1)

Euclid’s algorithm yields the digits
for the continued fraction expansion of u1

u0



Euclid algorithm and continued fractions
We start with two coprime integers u0 and u1

u0 = u1a1 + u2

...

um−1 = umam + um+1

um = um+1am+1 + 0

um+1 = 1 = gcd(u0,u1)

u1

u0
=

1
a1 +

u2
u1

u1/u0 =
1

a1 +
1

a2 + · · ·+ 1
am+ 1

am+1



Multidimensional case

Euclid’s algorithm

C Starting with two numbers, one subtracts the
smallest to the largest

C Starting with three numbers, which
subtraction/division has to be done ?



Multidimensional case
Continued fractions and unimodularity

pn

qn
:=

1

a1 +
1

· · ·+ 1
an

det
[

pn+1 qn+1

pn qn

]
= ±1

C SL(2,N) is a finitely generated free monoid
generated by [

1 0
1 1

]
and

[
1 1
0 1

]
C SL(3,N) is not finitely generated. Consider the
family of undecomposable matrices for n ≥ 3 [Rivat] 1 0 n

1 n − 1 0
1 1 n − 1





Multidimensional continued fractions
There is no canonical generalization of continued

fractions to higher dimensions

There is no canonical generalization of Euclid algorithm to
higher dimensions

Several approaches are possible
best simultaneous approximations but we then loose
unimodularity, and the sequence of best
approximations heavily depends on the chosen norm
[Lagarias]
Klein polyhedra and sails [Arnold]
unimodular algorithms

Lattice reduction (LLL) [Lagarias,Ferguson-
Forcade,Just,Havas-Majewski-Matthews
etc.]
 continued fractions based on the iteration
of piecewise fractional linear maps
Jacobi-Perron, Brun, Selmer, Poincaré etc.
[Brentjes, Schweiger]
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Multidimensional Euclid’s algorithms
Jacobi-Perron We subtract the first one to the two other ones
with 0 ≤ u1,u2 ≤ u3

(u1,u2,u3) 7→ (u2 − [
u2

u1
]u1,u3 − [

u3

u1
]u1,u1)

Brun We subtract the second largest entry and we reorder. If
u1 ≤ u2 ≤ u3

(u1,u2,u3) 7→ (u1,u2,u3 − u2)

Poincaré We subtract the previous entry and we reorder

(u1,u2,u3) 7→ (u1,u2 − u1,u3 − u2)

Selmer We subtract the smallest to the largest and we reorder

(u1,u2,u3) 7→ (u1,u2,u3 − u1)

Fully subtractive We subtract the smallest one to the other ones
and we reorder

(u1,u2,u3) 7→ (u1,u2 − u1,u3 − u1)



Why chosing these algorithms ?

They are not the best ones in terms of Diophantine
approximation compared to algorithms based on
lattice reduction
They are not the fastest ones experimentally for gcd
computation

There exist subquadractic gcd algorithms
[GMP= Möller’08]



Why chosing these algorithms ?

But
They can be described by a simple dynamical system

 dynamical analysis of multidimensional gcd
algorithms

They thus can be easily applied, for instance, in
discrete geometry



Continued fractions and dynamical systems

Consider the Gauss map

T : [0,1]→ [0,1], x 7→ {1/x}

2. SUMMARY OF CLASSICAL RESULTS 

The Gauss Map. We begin with the classical method for finding the continued 

fraction representation of a number y. We put no equal to the integer part of y, 

by which we mean the greatest integer less than or equal to y. If the fractional part 

of y is not zero, we put yo equal to the fractional part of y. We then invert yo, 

and put n, equal to the integer part of l /yo .  Similarly we put y, equal to the 

fractional part, and repeat. Note that no may be positive, negative, or zero, but 

that all the subsequent n, will be positive, and that each y, is in the interval [O, 1). 

This process gives us unique continued fraction for each starting point y, and the 

process terminates if and only if y is rational. (For any rational y there is one 

other simple continued fraction which is only trivially different from the one 

generated by this algorithm.) This algorithm is related to the Euclidean algorithm 

for finding the greatest common divisor (gcd) of two integers k and m (Olds 

[1963]), in that if we use this method to find the continued fraction of k/m, then 

the integer parts that arise are precisely the quotients that arise in the Euclidean 

algorithm, and in fact the last nonzero remainder from the Euclidean algorithm 

appears as the numerator of the last nonzero fractional part. This remainder is of 

course the gcd of k and m. Further, this algorithm can easily be seen to terminate 

in O(log(min(k, m)))operations. Classically, most attention has been paid to the 

integers generated by this algorithm, which make up the continued fraction itself. 

However, Gauss was apparently the first to study the other part of this algorithm, 

which we present as the following map, called the Gauss map (Mafi6 [I98711 (see 

FIGURE 1): 

i f x = O  

mod 1 otherwise 

Figure 1. The graph o f  the Gauss Map G(x).  Note that there are an infinite number o f  jump 

discontinuities at values o f  x = l / n ,  for integers n .  In addition, there is a pole at the origin. The 

darkening o f  the curve towards the origin is suggestive o f  the fractional nature o f  the capacity 

dimension. 

We use the notation "mod 1" to mean taking the fractional part. In terms of the 

Gauss map G, our algorithm then becomes 

y,,, = fractional part of l /y ,  = G ( y k )  

n,,, = integerpartof l /y , ,  f o r k  = 0 , 1 , 2 , 3  , . . .  

and we see that the continued fraction is generated as a byproduct of the iteration 

of the Gauss map. Thus we expect that any classical results on continued fractions 

will have implications for the dynamics of the Gauss map. 

204 R. M. CORLESS [March 



Continued fractions and dynamical systems
Consider the Gauss map

T : [0,1]→ [0,1], x 7→ {1/x}

x1 = T (x) = {1/x} = 1
x
−
[

1
x

]
=

1
x
− a1

x =
1

a1 + x1

an =

[
1

T n−1x

]

x =
1

a1 +
1

a2 +
1

a3 +
1

a4 + · · ·



Rational vs. irrational parameters

Euclid algorithm gcd rational parameters

Continued fractions irrational parameters

Is it relevant to compare generic orbits
and orbits for integer parameters ?



Rational vs. irrational parameters

When computing a gcd, we work with integer/rational
parameters
This set has zero measure
Ergodic methods produce results that hold only
almost everywhere

Average-case analysis vs. a.e. results

Fact Orbits of rational points tend to behave like generic
orbits

And their probabilistic bevaviour can be captured thanks
to the methods of dynamical analysis of algorithms



Dynamical analysis of algorithms [Vallée]
It belongs to the area of

• Analysis of algorithms [Knuth’63]

probabilistic, combinatorial, and analytic methods

• Analytic combinatorics [Flajolet-Sedgewick]

generating functions and complex analysis,
analytic functions, analysis of the singularities



Dynamical analysis of algorithms [Vallée]

It mixes tools from

• dynamical systems (transfer operators, density
transformers, Ruelle-Perron-Frobenius operators)

• analytic combinatorics (generating functions of Dirichlet
type)

the singularities of (Dirichlet) generating functions
are expressed in terms of transfer operators



Euclidean dynamics [Vallée]
One starts with a discrete algorithm

This algorithm is extended into a continuous one in
terms of a dynamical system

Orbits/trajectories = executions
Main parameters of the algorithm are studied in the
continuous framework

rational trajectories↔ generic trajectories
One comes back to the discrete algorithm

A transfer from continuous to discrete

“The probabilistic behaviour of gcd algorithms is quite
similar to the behaviour of their continuous

counterparts”



The floating-point Gauss map [Corless-
Continued fractions and Chaos-(1992)]

Consider the Gauss map T : [0,1]→ [0,1], x 7→ {1/x}
Theorem Orbits under the floating-point Gauss map are close
to corresponding exact orbits cf. shadowing properties

λ(x) = lim
n→∞

1
n

log

(
n∏

i=0

|T ′(T i(x))|

)
=

π2

6 log 2
for a.e. x

This yields “a candidate for ‘the worlds’ worst’ algorithm for
computing π. [· · · ]. This method is likely worse than nearly any
other in existence, since it does not converge to the correct
value in any particular fixed-precision system, since all orbits
are eventually periodic, and the Lyapounov exponent of a
periodic orbit is the logarithm of an algebraic number.[· · · ]. This
method is clearly related to the Monte-Carlo methods, with the
roundoff error associated with the floating-point arithmetic
playing the part of the random number generator required”.
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Transfer operators

Perron-Frobenius operator
associated with the Gauss map T : x 7→ {1/x}

P[f ](x) =
∑

y : T (y)=x

1
|T ′(y)|

f (y) =
∑
k≥1

(
1

k + x

)2

f
(

1
k + x

)
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P[f ](x) =
∑

y : T (y)=x

1
|T ′(y)|

f (y) =
∑
k≥1

(
1

k + x

)2

f
(

1
k + x

)
Take f = 1

1+x , one has P[f ] = f

The Gauss measure is defined on [0,1] as

µ(B) =
1

log 2

∫
B

1
1 + x

dx

It is T -invariant : µ(B) = µ(T−1B),∀B ∈ B



Transfer operators
Perron-Frobenius operator
associated with the Gauss map T : x 7→ {1/x}

P[f ](x) =
∑

y : T (y)=x

1
|T ′(y)|

f (y) =
∑
k≥1

(
1

k + x

)2

f
(

1
k + x

)

2. SUMMARY OF CLASSICAL RESULTS 

The Gauss Map. We begin with the classical method for finding the continued 

fraction representation of a number y. We put no equal to the integer part of y, 

by which we mean the greatest integer less than or equal to y. If the fractional part 

of y is not zero, we put yo equal to the fractional part of y. We then invert yo, 

and put n, equal to the integer part of l /yo .  Similarly we put y, equal to the 

fractional part, and repeat. Note that no may be positive, negative, or zero, but 

that all the subsequent n, will be positive, and that each y, is in the interval [O, 1). 

This process gives us unique continued fraction for each starting point y, and the 

process terminates if and only if y is rational. (For any rational y there is one 

other simple continued fraction which is only trivially different from the one 

generated by this algorithm.) This algorithm is related to the Euclidean algorithm 

for finding the greatest common divisor (gcd) of two integers k and m (Olds 

[1963]), in that if we use this method to find the continued fraction of k/m, then 

the integer parts that arise are precisely the quotients that arise in the Euclidean 

algorithm, and in fact the last nonzero remainder from the Euclidean algorithm 

appears as the numerator of the last nonzero fractional part. This remainder is of 

course the gcd of k and m. Further, this algorithm can easily be seen to terminate 

in O(log(min(k, m)))operations. Classically, most attention has been paid to the 

integers generated by this algorithm, which make up the continued fraction itself. 

However, Gauss was apparently the first to study the other part of this algorithm, 

which we present as the following map, called the Gauss map (Mafi6 [I98711 (see 

FIGURE 1): 

i f x = O  

mod 1 otherwise 

Figure 1. The graph o f  the Gauss Map G(x).  Note that there are an infinite number o f  jump 

discontinuities at values o f  x = l / n ,  for integers n .  In addition, there is a pole at the origin. The 

darkening o f  the curve towards the origin is suggestive o f  the fractional nature o f  the capacity 

dimension. 

We use the notation "mod 1" to mean taking the fractional part. In terms of the 

Gauss map G, our algorithm then becomes 

y,,, = fractional part of l /y ,  = G ( y k )  

n,,, = integerpartof l /y , ,  f o r k  = 0 , 1 , 2 , 3  , . . .  

and we see that the continued fraction is generated as a byproduct of the iteration 

of the Gauss map. Thus we expect that any classical results on continued fractions 

will have implications for the dynamics of the Gauss map. 

204 R. M. CORLESS [March 

Let H stand for the set of inverse branches of the Gauss
map

P[f ](x) =
∑
h∈H

h′(x) f ◦ h(x)



Transfer operators

Perron-Frobenius operator
associated with the Gauss map T : x 7→ {1/x}

P[f ](x) =
∑

y : T (y)=x

1
|T ′(y)|

f (y) =
∑
k≥1

(
1

k + x

)2

f
(

1
k + x

)

P[f ](x) =
∑
h∈H

h′(x) f ◦ h(x)

Ruelle operator

Ps[f ](x) =
∑
h∈H

h′(x)s f ◦ h(x) s ∈ C



Transfer operators and Brun algorithm

Each step of the algorithm is a linear fractional
transformation

Let ha be an inverse branch and Ja its Jacobian

P[a],s[f ](x) = J[ha]s(x) f ◦ ha(x)



Transfer operators and Brun algorithm

Defined on {(x1, . . . , xd ) ∈ [0,1]d ; x1 ≥ x2 ≥ . . . xd}

• Brun transformation
TB(x1, x2, . . . , xd ) = ord

(
x2
x1
, . . . , xd

x1
,
{

1
x1

})
m(x) =

[
1
x1

]
, j(x) = Pos

[{
1
x1

}
,
(

x2
x1
, . . . ,

xd−1
x1

)]
• Inverse branch
h(m,j)(y1, y2, . . . , yd ) =

(
1

m+yj
, y1

m+yj
, . . . ,

yj−1
m+yj

,
yj+1

m+yj
, . . . , yd

m+yj

)
• Jacobian J[h(m,j)](y) = 1

(m+yj )d+1



Generating functions and transfer operators

We are given a generalized Euclid algorithm

Ω : coprime entries u = (u0, · · · ,ud ) with u0 = max(ui)

Generating cost function

SC(s) :=
∑
u∈Ω

C(u)

us
0

where C is a cost function

For instance, C(u) is the number of steps performed by
the generalized Euclid algorithm on u = (u0, · · · ,ud )



Generating functions and transfer operators
We are given a generalized Euclid algorithm

Ω : coprime entries u = (u0, · · · ,ud ) with u0 = max(ui)

Generating cost function

SC(s) :=
∑
u∈Ω

C(u)

us
0

where C is a cost function

Fact
For the cost C ≡ 1

SC(d + 1) ∼ (I − Ps)−1[1](0)

since
1

ud+1
0

= J[h](0)



Generating functions and transfer operators
We are given a generalized Euclid algorithm

Ω : coprime entries u = (u0, · · · ,ud ) with u0 = max(ui)

Generating cost function

SC(s) :=
∑
u∈Ω

C(u)

us
0

where C is a cost function

For a general cost C, we introduce a further parameter w

TC(s,w) :=
∑
u∈Ω

1
us

0
exp[wC(u)]

P[a],s,w [f ](x) := J[ha]s(x) exp[wc(ha)] f ◦ ha(x)



Mean behaviour of the number of steps
Euclid algorithm

Consider parameters (u1, · · · ,ud ) with 0 ≤ u1, · · · ,ud ≤ N

Thm Expectation of the number of steps =
dimension

Entropy
×log N

Dimension
d= Number of parameters

Entropy
Growth rate of convergents
Speed of convergence
Chaotic dynamical systems



Mean behaviour of the number of steps
Euclid algorithm

Consider parameters (u1, · · · ,ud ) with 0 ≤ u1, · · · ,ud ≤ N

Thm Expectation of the number of steps =
dimension

Entropy
×log N

• Euclid algorithm

2
π2/(6 log 2)

log N

[Heilbronn’69,Dixon’70,Hensley’94,Baladi-Vallée’03...]



Mean behaviour of the number of steps
Euclid algorithm

Consider parameters (u1, · · · ,ud ) with 0 ≤ u1, · · · ,ud ≤ N

Thm Expectation of the number of steps =
dimension

Entropy
×log N

Jacobi-Perron
[Fischer-Schweiger’75]

Brun
[B.-Lhote-Vallée]



Mean behaviour of the number of steps
Euclid algorithm

Consider parameters (u1, · · · ,ud ) with 0 ≤ u1, · · · ,ud ≤ N

Thm Expectation of the number of steps =
dimension

Entropy
×log N

Formal power series with coefficients in a finite field
and ploynomials with degree less than m

2
2 q

q−1

m =
q − 1

q
m

[Knopfmacher-Knopfmacher’88, Friesen-Hensley’96,
B.-Nakada-Natsui-Vallée’11]



Comparing Euclid and cf algorithms

Number of steps and costs functions for algorithms
defined on rational entries

worst-case, mean behavior, average-case analysis
Convergence properties
Ergodic properties

ergodic invariant measure, natural extension
Arithmetic properties

cubic numbers and periodic expansions,
Diophantine approximation



And now...

Comparison with Knuth algorithm
Formal power series case
Analysis in distribution
How to understand algorithms based on lattice
reduction in dynamical terms ? [LLL and sandpile
models, LAREDA]
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